We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
statewavefunctionsatzerospatialseparationofthequarkswhilestatemixingreferstothemixingintheoverallwavefunctions.
Inthisworkweexpressηandη′aslinearcombinationsoforthogonalstatesηqandηswhichcanbegenerated
u+d2andsbytheaxialvectorcurrentswiththe avorstructureq
qands
2.Wewilldemonstratethattheproperuse
ofthisquark avorbasisprovidesfornewinsightsandsuccessfulpredictions.Wepointoutthatweemploy xed(momentum-independent)basisstates.Thus,ourstatemixingangleismomentumindependentandwell-de nedalsoinanyotherbasisobtainedbyanorthogonaltransformation.Thisdi ersfromotherpossibleapproachesinwhichmomentumdependentmassmatricesareintroduced(see,forinstance,[9]).Thedecayconstants,ontheotherhand,willingeneraldependonq2,i.e.theparticlestatesandmasses,andwillthusrequireaparametrizationbytwodi erentmixinganglesasin(1.3).Theseanglesdependonthebasiswhichisusedforthede nitionofthedecayconstants.Asdescribedbelow,thebasicassumptionwhichwewilluseinthispaperisthatthedecayconstantsfollowthestatemixingifandonlyiftheyarede nedwithrespecttothequarkbasis.Inthiscircumstancethetwoanglesforthedecayconstantsobtainedinthisbasisandthecorrespondingstatemixinganglecoincideandarethusmomentum-independent.
De ningnowdecayconstantsanalogoustoEq.(1.1)butwithi=q,sanddenotingtheη–η′mixinganglethatdescribesthedeviationfromidealmixing,byφ,wepropose
qfη=fqcosφ,qfη′=fqsinφ,sfη= fssinφ,
sfη′=fscosφ.(1.4)
Thatthedecayconstantsinthequark avorbasisfollowinthiswaythepatternofparticlestatemixingisourcentralassumption.Itisequivalenttotherequirementthatthecontributionfq(fs)tothedecayconstantsobtainedfromtheηq(ηs)componentsofthewavefunctionsisindependentofthemesoninvolved.Thisassumptionappearsplausiblebutwehavenorigorousjusti cationforitandhavetotestit.ItiscertainlyrestrictiveaswillbeshowninSect.II: rst,itreducesthenumberofparametersagaintothree.Secondly,byinvokingthedivergencesofthecurrents,theangleφisconnectedtofq/fs.Finally, avorsymmetry xesfqandfsto rstorderofSU(3)Fbreaking,leavingus–tothisorder–withnofreeparameter.Massmixingofthepseudoscalarmesonsisalsodiscussedinthissection.NumerousphenomenologicalchecksarepossibleandperformedinSect.III.WedeterminephenomenologicalvaluesforthethreeparametersfromthedataandcheckforconsistencywithChPTandtheearlierdetermination[7]ofthefourquantitiesf8,f1,θ8,θ1.OurschemewillthenbegeneralizedtoincludetheηcinSect.IV.Thegeneralizedapproachallowstocestimatethequarkcontentofthethreepseudoscalarmesons,themixinganglesandthecharmdecayconstantsfηcandfη′whichattractedmuchinterestinthecurrentdiscussion[10–13]oftheratherlargebranchingratiofortheprocessB→Kη′asmeasuredbyCLEO[14].OursummaryispresentedinSect.V.
II.THEqsMIXINGSCHEME
Thetwostatesηqandηsarerelatedtothephysicalstatesbythetransformation
ηqη=U(φ),′ηηs
whereUisaunitarymatrixde nedby
U(α)= cosα
sinα sinαcosα .(2.1)(2.2)
Weassumethatthephysicalstatesareorthogonal,i.e.thatmixingwithheavierpseudoscalarmesons(e.g.theηc)canbeignored,see,however,Sect.IV.Westressthataslongasstate-mixingisconsidered,onemayfreelytransformfromoneorthogonalbasistotheother.Forexample,thestandardoctet-singletmixingangleisgivenbyθ=φ θideal.AccordingtoourcentralassumptiondescribedinSect.1,wetake
q s fηfηfq0=U(φ)F,F=.(2.3)qsfηfη0fs′′