手机版

小学数学的几种解题策略(2)

发布时间:2021-06-05   来源:未知    
字号:

例:自行车和汽车共有24辆,已知全部轮胎有54只(每辆汽车以4只轮胎计算),自行车和汽车各有几辆?

假设:24辆车都是汽车,那么按每辆汽车4只轮胎计算,轮胎只数应为96只,这比题中说的全部轮胎54只多算了42只(96-54),怎么会多算42只轮胎,这是由于假定自行车的辆数,把它当作汽车来计算。

每辆自行车是2只轮胎,比每辆汽车少2只轮胎,现在把自行车假设为汽车后,每辆自行车就多算了2只轮胎,那么,多算42只轮胎就可求出有几辆自行车算作汽车。据此,可以推

算出自行车的辆数。

(4×24-54)÷(4-2)=42÷2=21(辆)

自行车有21辆,而自行车和汽车总计是24辆,减法计算,可得汽车辆数:

24-21=3(辆)

答:自行车有21辆,汽车有3辆

四、转化的策略

有些应用题,数量关系较为复杂,求解时有一定的难度,可考虑运用转化的方法进行解答。 例:某工程由甲先做12小时,再由甲、乙两人合作,完成任务时,甲做了这项工程的5/8,甲每小时的工作量是乙的2/3,如果这项工程由甲单独做,需要几小时才能完成?

分析与解答:这题数量关系较为复杂,求解时有一定的难度,可考虑运用转化的方法进行解答。

因为由题目条件可知道,完成任务时,甲做了这项工程的5/8,因此可得,完成任务时,乙完成了这项工程的:1-5/8=3/8;又因为甲每小时的工作量是乙的2/3,所以可得,乙完成这项工程的3/8的时间,正好相当于甲完成这项工程:3/8×2/3=1/4。因此可得,甲先做12小时,完成了这项工程的:5/8-1/4=3/8,甲单独完成这项工程要用的时间为:12÷(5/8-1/4)=32(小时)。

参考文献:九年制义务教育《数学新课程标准》

《参与式教学活动设计》

作者单位:甘肃省白银市靖远师范学校

小学数学的几种解题策略(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)