手机版

高中物理竞赛教程(超详细) 第十讲 几何光学(17)

发布时间:2021-06-05   来源:未知    
字号:

高中物理竞赛教程(超详细) 第十讲 几何光学

A点处椭球面的法线,i为入射角,r为折射角。根据椭圆的性质,法线BN平分,故与法线的夹角也是r,由正弦定律可得
   ,
  从而可求得
  
  2a为长轴的长度,2c为焦点间的距离;即只要n满足以上条件,任意入射角为i的平行于旋转椭球长轴的入射光线都能会聚于C(即)点。
  (2)如果透镜置于折射率为的介质中,则要求
  
  即椭圆的偏心率e应满足
  由于椭圆的e<1,如果就无解。只要 ,总可以找到一个椭球面能满足要求。
  例4、(1)图1-4-16所示为一凹球面镜,球心为C,内盛透明液体。已知C至液面高度CE为40.0cm,主轴CO上有一物A,物离液面高度AE恰好为30.0cm时,物A的实像和物处于同一高度。实验时光圈直径很小,可以保证近轴光线成像。试求该透明液体的折射率n。
  (2)体温计横截面如图1-4-17所示,已知细水银柱A离圆柱面顶点O的距离为2R,R为该圆柱面半径,C为圆柱面中心轴位置。玻璃的折射率n=3/2,E代表人眼,求图示横截面上人眼所见水银柱像的位置、虚像、正倒和放大倍数。
  解: (1)主轴上物A发出的光线AB,经液体界面折射后沿BD方向入射球面镜时,只要BD延长线经过球心C,光线经球面反射后必能沿原路折回。按光的可逆性原理,折回的光线相交于A(图1-4-18)。
  对空气、液体界面用折射定律有
  
  
  当光圈足够小时,B→E,因此有
  
  (2)先考虑主轴上点物A发出的两条光线,其一沿主轴方向ACOE入射界面,无偏折地出射,进入人眼E。其二沿AP方向以入射角i斜入射界面P点,折射角为r。折射光线PQ要能进入人眼E,P点应非常靠近O点,或说入射角i 折射角r应很小。若角度以弧度量度,在小角(近轴)近似下,折射定律可写为。这两条光线反向延长,在主轴上相交于,即为物A之虚像点(图1-4-19)
  对用正弦定律,得
  
  在小角(近轴)近似下:
  ,
  
  上式可写为
  解上式得
  为了分析成像倒立和放大情况,将水银柱看成有一定高度的垂轴小物体AB,即然是一对共轭点,只要选从B发出的任一条光线经界面折射后,反向延长线与过垂轴线相交于,是点物B虚像点,即是物AB之正立虚像。
  选从B点发出过圆柱面轴心
C之光线BC。该光线对界面来说是正入射(入射角为零),故无偏折地出射,反向延长BC线交过垂轴线于,从得
  放大率=
  例5、有一半径为R=0.128m的玻璃半球,过球心O并与其平面部分相垂直的直线为其主轴,在主轴上沿轴放置一细条形发光体(离球心较近),其长度为L=0.020m。若

高中物理竞赛教程(超详细) 第十讲 几何光学(17).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)