电子小报模板手抄报模板
勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方。
勾股定理的逆定理:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方,那么这个三角形是直角三角形。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。 勾股定理其实是余弦定理的一种特殊形式。
我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。 勾股定理的来源
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理做出了详细注释,又给出了另外一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。常用勾股数组(3, 4 ,5);(6, 8, 10);(9,12,15);(5, 12 ,13);(8, 15, 17) ;(7,24,25) ;(9,40,41)。