有理数、代数式知识点总结,很详细
①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”; ③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”; ⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:
⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a
4.有理数减法法则:减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如: (-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)
法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.
2.倒数:乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·1=1(a≠0), a
注意:①0没有倒数;②正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);③倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba
⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc). ⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac
4.有理数的除法法则
(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。 有理数的乘方
1.乘方的概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 a 中,a 叫做底数,n 叫做指数。
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂是正数。(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。 n
有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。