卷积神经网络和一些独立成分分析的外文文献
900B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906
issueishowtoremovetheeffectsofnoisecomponentsandachieveconsistentresultsindifferentscales.ThisisthesubjectofSection4.
2.Previousworkonfeatureextractionofdynamictransients
Thissectionbrie yreviewssomeofthepreviousworkonfeatureextraction.Featureextractionisbasi-callyatransformationofthedatacomposingady-namictrendtoalowerdimensionality.Animportantpropertyofsuchatransformationisthatitisinforma-tionpreserving,thatis,dataisreducedbyremovingredundantcomponentswhilepreserving,insomeopti-malsense,informationwhichiscrucialforpatterndiscrimination.
Someresearchershaveadaptedtheepisoderepresen-tationtechniqueoriginatedbyWilliam(1986)toquali-tativeinterpretationoftransientsignals.JanuszandVenkatasubramanian(1991)developedanepisodeap-proachthatusesnineprimitivestorepresentanyplotsofafunction.Eachprimitiveconsistsofthesignsandthe rstandsecondderivativesofthefunction.There-fore,eachprimitivepossestheinformationaboutwhetherthefunctionispositiveornegative,increasing,decreasing,ornotchangingandtheconcavity.Anepisodeisanintervaldescribedbyonlyoneprimitiveandthetimeintervaltheepisodespans.Atrendisaseriesofepisodesthatwhengroupedtogethercancom-pletelydescribethedynamicfeature.Theapproachautomaticallyconvertson-linesensordatatoqualita-tiveclassi cationtrees.CheungandStephanopoulos(1990)developedaslightlydifferentapproachcalledtriangular-episodethatusesseventrianglecomponentstodescribeadynamictrend.BakshiandStephanopou-los(1994,1996)usedwaveletdecompositionoffunc-tionsindifferentscalesandzero-crossingofwaveletderivativesto ndthein ectionsofdecomposition.Inthisway,episodescanbeidenti edautomaticallybycomputers.Basedonepisodeanalysis,dynamictrendscanbeinterpretedassymbolicrepresentations.Themainideaofdynamictrendinterpretationusingepisodeapproachesistoclassifyatrendsuchasincreasingordecreasingpieces.Thisinterpretationissometimesnotenoughandinadequateinprocessanalysis.Further-more,thereisnonoise lteringinanyoftheepisodebasedapproaches,whichsigni cantlylimitsthetrendrepresentationandidenti cationcapability.
WhiteleyandDavis(1992)appliedback-propagationneuralnetworks(BPNN)toconvertnumericalsensordataintosymbolicabstractions.Themajorlimitationofthisapproachisthatitrequirestrainingdatatotrainthemodel rst.
ThemostwellknowntechniqueforsignalanalysisisprobablytheFouriertransformanditistherefore
necessarytomentionedithere.Fouriertransformusessineandcosineasitsbuildingblockstodecomposeafunctionintoasumoffrequencycomponents.How-ever,Fouriertransformdoesnotshowhowfrequencyvarieswithtime,thereforeitisnotabletodetectwhenaparticulareventtookplace.Itmeansthatthenon-sta-tionaryfeatureofthesignalisnotcaptured.Theshort-timeFouriertransformisabletoovercomethislimitationbyslidingawindowoverthesignalintime.Howeverintime-frequencyanalysisofanon-stationarysignal,therearetwocon ictingrequirements.Thewin-dowwidthmustbelongenoughtogivethedesiredfrequencyresolutionbutmustalsobeshortenoughtolosetrackoftimedependentevents.Whileitispossibletooptimisethedesignofwindowshapestooptimise,ortrade-offtimeandfrequencyresolution,thereisafun-damentallimitationonwhatcanbeachieved,foragiven xedwindowwidth(Dai,Joseph&Motard,1994).
3.Featureextractionusingwavelettransform
Averybriefintroductionofwavelettransformationforsignalprocessingisnowpresented.Thenthemethodemployedinthisstudyforfeatureextractionusingwaveletsisintroducedandillustratedusingexamples.
3.1.Signaltransformationusingwa6elets
Wavelettransformationisdesignedtoaddresstheproblemofnon-stationarysignals.Itinvolvesrepre-sentingatimefunctionintermsofsimple, xedbuild-ingblocks,termedwavelets.Thesebuildingblocksareactuallyafamilyoffunctionswhicharederivedfromasinglegeneratingfunctioncalledthemotherwaveletbytranslationanddilationoperations.Dilation,alsoknownasscaling,compressesorstretchesthemotherwaveletandtranslationshiftsitalongthetimeaxis.&
Themotherwaveletsatis es
+
(t)dt=0(1)
andthetranslationandscalingoperationson (t)createsafamilyoffunctions,
=
1a,b(t) t ba
(2)Theparameteraisascalingfactorandstretches(or
compresses)themotherwavelet.Theparameterbisatranslationalongthetimeaxisandsimplyshiftsawaveletandsodelaysoradvancesthetimeatwhichitisactivated.Mathematicallydelayingafunctionf(t)bytdisrepresentedbyf(t td).Thefactor1/ aisusedtoensuretheenergyofthescaledandtranslatedversionsarethesameasthemotherwavelet.