卷积神经网络和一些独立成分分析的外文文献
B.H.Chenetal./ComputersandChemicalEngineering23(1999)899–906903
Fig.2.The‘least-Asymmetric’scalefunctionandwaveletfunction.
Fig.3.Signal(a)anditsextrema(b)ofwaveletanalysisusingDaubechies’eightcoef cientswavelet.
Fig.5andFig.6illustratethisidea.InFig.5,threedifferentnoisefrequenciesarestudied.Thewaveletmulti-resolutionanalysisisshownontheleftandex-tremaofwaveletanalysisareontheright.Clearly,theextremawilldecreaseandthendisappearasthescaleincreases.
Fig.6showsasignalwhichisbasicallythesineinFig.3acorruptedbywhitenoiseaswellasthewaveletmulti-scaleextremaanalysis.Noisecomponentsarere-ducedandthendisappearasthescaleincreases.Theresultsforscales-4and-5aresimilartothatofFig.3bwhichisnoise-free.Thisshowsthattheextremaofthetrendsignalareretainedwhilenoiseextremaare ltered.
theextremarepresentationinscale-4isavectorofdimension70,
Scale-4=(…x5…x23…x37…x53…)
wherex5standsforanon-zerodatumincolumn5.Whileinscale-5,itbecomes
3.4.Piece-wiseprocessing
Twoobservationsaremadeabouttheabovediscus-sions.Firstly,extremaanalysisusingwaveletmultireso-lutionanalysisremainssteadywiththeincreaseofscales,sotherepresentationissteady.Forexample,inFig.6whenthescaleisincreasedfromfourto ve,thefourextremaremain.Secondly,thelocationofextremamayslightlyshiftwithtimeasscaleincreases.InFig.6,
Fig.4.ExtremaofwaveletanalysisusingDaubechies’tencoef cientswavelet.