Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETICENGINEERING:AFORMALAPPROACH.
JOHNS.GEROANDVLADIMIRA.KAZAKOV
KeyCentreofDesignComputing,
DepartmentofArchitecturalandDesignScience,
TheUniversityofSydney,NSW2006Australia.
e-mail:john,kaz@arch.su.edu.au
Abstract.Thispaperpresentsaformalapproachtotheevolutionofarepresentationforuseinadesignprocess.Theapproachadoptedisbasedonconceptsassociatedwithgeneticengineering.Aninitialsetofgenesrepresentingelementarybuildingblocksisevolvedintoasetofcomplexgenesrepresentingtargetedbuildingblocks.Thesetargetedbuild-ingblockshavebeenevolvedbecausetheyaremorelikelytoproducedesignswhichex-hibitdesiredcharacteristicsthanthecommencingelementarybuildingblocks.Thetar-getedbuildingblockscanthenbeusedinadesignprocess.Thepaperpresentsaformalevolutionarymodelofdesignrepresentationsbasedongeneticalgorithmsandusespatternrecognitiontechniquestoexecuteaspectsofthegeneticengineering.Thepaperdescribeshowthestatespaceofpossibledesignschangesovertimeandillustratesthemodelwithanexamplefromthedomainoftwo-dimensionallayouts.Itconcludeswithadiscussionofstyleindesign.
1.Introduction
Thereisanincreasingunderstandingoftherolethatadesignlanguageanditsrep-resentationplayintheef ciencyandef cacyofanydesignprocesswhichusesthatlanguage(Coyneetal.,1990;Geroetal.,1994).Arecurringissueiswhatistheappropriategranularityofalanguage.Ifbuildingblockswhichconstitutetheelementsofadesignmapontoadesignlanguagethenthequestionbecomeswhatisanappropriatescaleforthosebuildingblocksintermsofthe naldesign.Atoneextremewehaveparameterisedrepresentationswherethestructureofadesignis xed,allthevariableswhichgotode neadesignareprede nedandwhatisleftistodeterminethevaluesofthosevariables.Thisde nesaverysmalldesignspace,smallintermsofallthepossibledesignswhichmightbeabletobeproducedforthatdesignsituation.Attheotherextremewehaveelementarybuild-ingblockswhichcanbecombinedinaverylargevarietyofwaysandwhich,asa
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
2JohnS.GeroANDVladimirA.
Kazakov
Se
Figure1.
ingblocks,
variables,isthedesignspaceproducedbyallthepossiblecombinationsoftheelementarybuild-isthedesignspaceproducedbyallthecombinationsofthevaluesoftheparameterisedisthedesignspaceofinterestingdesignsforthedesignsituation.
consequencede neaverylargedesignspace,thevastpartofwhichcoversdesignswhicharelikelytobeuninterestingintermsofthecurrentdesignsituation.Thedesignsproducedbytheparameteriseddesignrepresentationsareasubsetofthosecapableofbeingproducedbytheelementarybuildingblockrepresentation,Fig-ure1.Examplesofbuildingblockrepresentationsincludeconstructivesystemssuchasdesigngrammarsasexempli edbyshapegrammars(Stiny,1980b).Ex-amplesofparameterisedvariablerepresentationsincludeawidevarietyofdesignoptimizationformulations(Gero,1985).
Theadvantageoftheuseoftheelementarybuildingblocksrepresentationisthecoverageoftheentiredesignspacetheyprovide,whereastheadvantageoftheparameterisedvariablerepresentationistheef ciencywithwhichasolutioncanbereached.
Wepresenthereaformalapproachwhichgeneratesatargetedrepresentationofadesignproblem.Atargetedrepresentationistheonewhichcloselymapsontotheproblemathand.Asanexampleconsideralayoutplanningprobleminarchi-tecturaldesign.Onerepresentationmaybeatthematerialmolecularlevel,wheremoleculescanbecombinedtomakeavarietyofmaterialsandparticularcombina-tionsinspaceproducephysicalobjects;herethepotentialsolutionspaceincludesdesignswhichbearnorelationstoarchitecture.Atargetedrepresentationsmaybetorepresentroomssuchthatthepotentialsolutionspaceprimarilyincludesdesignswhichareallrecognizablyarchitecturallayouts.
Inordertosimplifyouranalysisweconsiderdesignswhichareassembledfrom
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
3
Figure2.ThesetofbuildingblocksforFroebel’skindergartengifts(Stiny,1980b).
some nitecollectionofspatialelements(wecallthembuildingblocksorcompon-ents)alongwithassemblyrules.Itisassumedthattheassemblyrulesdonotaffectthecomponents-thedesignobjectisaunionofnon-overlappingbuildingblocks.Westartwithsomesetofbuildingblockswhichwecallelementarycomponents.Itisassumedthattheycannotbedecomposedintoanysmallerones.Wecallasetofbuildingcomponentsandassemblyrulesarepresentationofthedesignproblemandthesetofelementarycomponentsandcorrespondingrulesthebasicrepresent-ation.Wecallitarepresentationbecauseitimplicitlyde nesthesetofalldesigns(designstatespace)whichcanbeproducedusingthissetofbuildingblocksandassemblyrules.
ThekindergartengiftsofFroebel(Stiny,1980b)isatypicalexampleofsuchtypesofdesignproblem.Oneofmanypossibleelementaryrepresentationsandas-semblyrulesforitisshowninFigures2and3.Onecaneasilyextenditbyaddingfurtherelementarybuildingblocksand/orfurtherassemblyrules.
Targetedrepresentations
uallythedesignerisinterestedinsomeparticularclassofdesigns.Assumewehavesomeadditionalsetofcompositebuildingblocksandanadditionalsetofassemblyrulestohandlethem.Wecancalculatethenumberofthesecompositebuildingblockswhichcanbefoundinallpossibledesignsinthatparticularclassandthenumberofelementarybuildingblocksusedtobuildtherestofthesedesigns(eachelementarybuildingblockshouldbecountedonlyonceasamemberofcompositebuildingorelementarybuildingblock,thelargestcompositeblocksarecounted rstandtheelementaryblocksarecountedlast).Thenwecancalculatethefrequencyofusageofthesecompositebuildingblocksandelementarybuildingblocksintheentiredesignspace.Thesamevaluescanbecalculatedforalldesignswhichhavethepropertyorpropertiesweareinterestedin.Ifthefrequencyoftheusageofthecompositebuildingblocksismuchhigherforthedesignsofinterestthanforalldesignsbuiltfromtheelementarybuildingblockandthefrequencyofelementarycomponentsusageismuchlowerthanthatofthecompositebuildingblocksforthedesignspaceofinterestthenwecanusethecompositebuildingblocksinstead
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
4JohnS.GeroANDVladimirA.
Kazakov
Figure3.ThesetofsixassemblyrulesforFroebel’skindergartengifts.
ofelementaryonetoproducedesignsofinterestwithmuchhigherprobability.Inotherwordsarepresentationexistswhichmapsintotheareaofinterestoftheentiredesignspace.Letuscallitthetargetedrepresentationfortheparticularclassofdesigns.Obviouslydifferenttargetedrepresentationscanbeproducedwhichcor-respondtodifferentsetsofcompositebuildingblocks.Wecharacterizetheserep-resentationsbytheir“complexity”whichisde nedrecursivelyas:0-complexityforthebasicrepresentation,1-complexityfortherepresentationwhosebuildingblocksareassembledfromelementarybuildingblocks,2-complexityfortherep-resentationwhosebuildingblocksareassembledfromthebuildingblocksof0-complexityand1-complexity,etc.Assumeanevolutionoccursinanabstractspaceofcomplexrepresentations:initiallyonlyelementarybuildingblocksexistthenacycleproceedswhenanewsetofcompositebuildingblocksisproducedfromtheoneswhicharecurrentlyavailable.Thenarepresentationofi-complexity(andbuildingblocksofi-complexity)simplymeansthatcompositebuildingblocksofthisrepresentationhavebeenproducedduring-thstepofthisevolution.
Differentcompositebuildingblocksofthesame-complexitymaycontaindif-ferentnumbersofelementarybuildingblocks:forexample,assumesomebuild-ingblockof3-complexitycontains3elementarybuildingblocksandoneofthecompositebuildingblocksof4-complexityisassembledfrom2buildingblocksof3-complexityandthuscontains6elementarycomponentsandanotheroneisas-sembledfromoneblockof3-complexityandoneblockof0-complexityandthuscontains4elementarycomponents.Itisalsoclearthatbecausetherearedifferentwaystoassemblethesamecompositebuildingblockitmaybeproducedmultiple
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering5
(a)
(b)(c)
Figure4.Thesetofcompositebuildingblocksofdifferentcomplexityforbuildingastaircase;(a)1-complexity,(b)and(c)2-complexity.
timesinrepresentationsofdifferentcomplexitylevelduringtheevolution.
Thesearchforareasonablygooddesignusingthebasicrepresentationisverydif cultbecausesigni cantpartofthesearcheffortiswastedinthesearchofun-usefulpartsofthedesignspace.Ifthetargetedrepresentationisusedinsteadofele-mentaryonetheprobabilityofproducingdesignsofinterestbecomesmuchhigher,thedesignspacebecomessmallerandthedesignproblemlesscomplicatedandeasiertodealwith.Theapproachpresentedinthisarticleautomaticallygeneratesthehierarchyofmoreandmorecomplexbuildingblocks(ingeneral);oneswhicharemoreandmoreclosetothetargetedrepresentationswhicharecapableofpro-ducingbetterandbetterdesigns.
AssumeweworkwiththerepresentationofthekindergartenblocksshowninFigures2and3andaretryingtodesignatwo-levelbuildingwithwalkingac-cessfromone oortothenext.Thesearchforadesignwiththispropertyisquitedif cultbecauseonlyaverysmallfractionofallfeasibleobjectsexhibitsitandtheprobabilityofdiscoveringthecombinationofbuildingblockswhichmakesastaircaseduringthesearchislow.However,ifweaddacompositeobjectof1-complexity(Figure4)andcorrespondingassemblyrulesFigure5totherepres-entationweincreasethisprobability,andifweaddacompositebuildingblockwith2-complexity(Figure4)thenthisprobabilityincreasesfurther.
Geneticengineering
Geneticengineering,asusedinthispaper,isderivedfromgeneticengineeringno-tionsrelatedtohumaninterventioninthegeneticsofnaturalorganisms.Inthege-neticsofnaturalorganismswedistinguishthreeclasses:thegeneswhichgotomakethegenotype,thephenotypewhichistheorganicexpressionofgenotype,andthe tnessofthephenotypeinitsenvironment.Whenthereisauniqueidenti- able tnesswhichisperformingparticularlywellorparticularlybadlyamongstallthe tnessofinterestwecanhypothesizethatthereisauniquecauseforitand
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
6JohnS.GeroANDVladimirA.
Kazakov
Figure5.Thesetofadditionalassemblyrulesforhandlingcompositebuildingblocks.thatthisuniquecausecanbedirectlyrelatedtotheorganism’sgeneswhichap-pearinastructuredforminitsgenotype.Geneticengineeringinconcernedwithlocatingthosegeneswhichproducethe tnessunderconsiderationandinmodify-ingthosegenesinsomeappropriatemanner.Thisisnormallydoneinastochasticprocesswhereweconcentrateonpopulationsratherthanonindividuals.
Organismswhichperformwell(orbadly)inthe tnessofinterestaresegreg-atedfromtheseorganismswhichdonotexhibitthat tnessordosoonlyinamin-imalsense.Thisbifurcatesthepopulationintotwogroups.Thegenotypesoftheformerorganismsareanalysedtodeterminewhethertheyexhibitcommonchar-acteristicswhicharenotexhibitedbytheorganismsinthelattergroup(Figure6).Iftheyaredisjunctive,thesegenesareisolatedonthebasisthattheyarerespons-iblefortheperformanceofthe tnessofinterest.Innaturalgeneticengineeringtheseisolatedgenesareeithertheputativecauseofpositiveornegative tness.Ifnegativethentheyaresubstitutedforby“good”geneswhichdonotgeneratethenegative tness.Iftheyareassociatedwithpositive tnesstheyarereusedinotherorganisms.Itisthislaterpurposewhichmapsontoourareaofinterest.
Onecaninterprettheproblemof ndingthetargetedsetofbuildingblocksasananalogofthegeneticengineeringproblem: ndingtheparticularcombin-ationsofgenes(representingelementarybuildingblocks)ingenotypeswhichareresponsibleforthepropertiesofinterestofthedesignsandregularusageofthesegeneclusterstoproducedesignswithdesiredfeatures.
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
7
‘‘good’’ genotypes‘‘bad’’ genotypes
Figure6.Thegenotypesofthe“good”membersofpopulationallexhibitgenecombinations,X,whicharenotexhibitedbythegenotypesofthe“bad”members.Thesegenecombinationsaretheonesofinterestingeneticengineering.
2.Buildingblocks
Thus,weestablishthatdifferentbuildingblocksde nedifferentdesignstatespaces(whichare,intheirturn,thesubsetsoftheentirebasicdesignspace).Moreform-allyweassumethatforthedesignspaceofinterestasetofcompositebuildingblocksexistswhichissuf cienttobuildanydesignofinterestfromit(orwhicharesuf cienttobuildasigni cantpartofanyofthesedesignsofinterest).
Wesearchforthesebuildingblocksusingtheconsequenceoftheassumptionmadeintheintroductionaboutfrequenciesofcompositecomponentsusage:onav-eragethesamplingsetofdesignswiththedesiredcharacteristics(the“good”ones)containsmoreofsuchcompositebuildingblocksthanthesamplingsetofdesignsthatdonothavethesecharacteristics(the“bad”ones).Insomecasesitiseventrueinadeterministicsense-thatonlythedesignswhichcanbebuiltcompletelyfromsomesetofcompositebuildingblockspossesstheobjectivecharacteristics,alltherestoftheentirebasicstatespacedoesnothavethem.Onecaneasilycomeupwithcorrespondingexamples.
Inthenextsectionwedescribeanevolutionaryalgorithmwhichgenerates“good”and“bad”samplingsetsusingthecurrentsetofbuildingblock(setofelementaryblockatthebeginning)andusegeneticengineeringconceptstodeterminenewcompositeblockswhichareclosertothe“targeted”onesthanthecurrentsetofbuildingblocks.Thesetwostepsproceedincyclewhilethe“good”samplingsetconvergestothesamplingsetfromthedesireddesignstatespaceandthesetof
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
8
JohnS.GeroANDVladimirA.
Kazakova
bFigure7.Theassembly(transformation)rulesusedintheexample.
complexbuildingblockscomescloserandclosertothetargetedset.
Ifthebasicassumptionaboutmorefrequentuseofsomecompositebuildingblockstogeneratetheparticularclassofdesignsisnottrueforsomeproblemthenthetargetedrepresentationforthisproblemdoesnotexistandthealgorithmwhichisproposedbelowwillnotgenerateanimprovedrepresentationbutwillbeequi-valenttothealgorithmforsolvingtheroutinedesignproblem(GeroandKazakov,1995)andwillsimplygeneratetheimproveddesigns.
Ifthesequenceofassemblyactionsiscodedasarealvectorthentheproblemof ndingthecomplexbuildingblocksbecomestheproblemof ndingthekeypatternsinthecodingvector-thecombinationsofcodeswithinitwhicharelikelytobeassociatedwiththepropertyofinterestinthedesigns.Thevastarsenalofpatternrecognitionmethodscanbeusedtosolvethisproblem.Essentiallytheyarejustsearchmethodsforsubsetsinacodingsequencewhichonaveragearemorefrequentlyobservedinobjectswithdesiredcharacteristicsthanintherestofthepopulation.
Letusillustratetheexecutionofthecyclejustoutlinedusingasimple2-dimensionalgraphicalexample.Wewilldescribeitinmoredetaillaterbutfornowonitissuf- cienttosaythatthereisonlyoneelementaryblockhere-thesquareandthatadesignisassembledfromcubesusingthe8rulesshowninFigure7.Anydesigncanbecodedasasequenceoftheserulesusedtoassembleit.Assumewearetryingtoproduceadesignwhichhasthemaximumnumberofholesinitandthateachdesigncontainsnotmorethan20squares.WestartthecyclebygeneratingasetofcodingsequencesandcorrespondingdesignsFigure8.Thenwenoticethatanum-ber(4)ofthedesignshavethemaximalnumberofholes(designs1,2,4,and7-the“good”samplingset)containthecompositebuildingblockandthatforthreeofthemtheircodingsequencescontainthepattern.Wealsonoticethatonlyafew(noneinthiscase)ofthedesignswithoutholes(designs3,5,8and10-the“bad”samplingset)containthisblockandnonecontainthispatternintheircodingsequence.Thenwecangeneratethenextpopulationofcodingsequencesusingthe
asanewrulewhichusesthecompositebuildingblockidenti edsequence
inthedesign.Assumingthatweemploysomeoptimizationmethodtogeneratethisnewpopulationwecanexpectthatthe“good”samplingsetfromthenewpop-
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
design 2design 39
good{3,2,2,6,5,8,2,1,4,4,3,1}design 6
{2,3,2,3,4,3,5,6,5,1,6,2}design 9
neutral{6,4,1,2,3,4,5,2,1,7,4}
Figure8.Theidenti cationofthepattern
inthegenotypesof“good”designs.andcorrespondingcompositebuildingblock
ulationisbetterthanthepreviousone(thatis,thedesignswhichbelongtoithaveonaveragemoreholesthantheonesfromtheprevious“good”samplingset).Thenweagaintrytoidentifythepatternswhicharemorelikelytobefoundindesignsfromthis“good”samplingsetthanfromthe“bad”one.Thistimethesepatternsmaycontainthepreviouslyidenti edpattersasacomponent.Thenwegenerateanewpopulationofdesignsusingtheseadditionalpatternsequencesofrulesasanadditionalassemblyruleandsoon.
Thesizesofthesamplingsetsinrealisticsystemsislikelytobemuchlarger
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
10JohnS.GeroANDVladimirA.Kazakov
thantheonesinthisexampleandmuchmoresophisticatedtechniques(PearsonandMiller,1992)shouldbeemployedtosingleoutthesekeypatterns.
3.Evolvingbuildingblocks
Foramoreformalanalysisoftheevolutionofthebuildingblocksweusetheshapegrammarformalism(Stiny,1980a).Itconsistsofanorderedsetofinitialshapesandanorderedsetofshapetransformationruleswhichareappliedrecursively.Aparticulardesignwithinthegivengrammariscompletelyde nedbyacontrolvectorwhichde nestheinitialshapeandtransformationrulesappliedateachstageofrecursiveshapegeneration.AccordingtothediscussionintheIntroduc-tionweconsideraparticularclassofshapegrammarsimilartothekindergartengrammar(Stiny,1980b),whereanyshapeisanon-overlappingunionofbuildingblocksandfeasibleshapetransformationsareaddition,replacementordeletionofthebuildingblocks.
beasetofcurrentlyavailablebuildingblocks,andbeasetofassemblyrulesapplicabletotheseblocks.,,,,Thenthecontrolvector
de nesthepopulationofdesigns,.,isavariable.Thelengthofthecontrolvector
Ifweaddnewcomplexbuildingblock
andnewassemblyrulesforitshandlingthenwegetanewextendedsetofrules,,and.
whichcorrespondstothevectorwhoseNowwecanproducethedesign
componentsbelongtotheextendedand.Notethattheadditionalbuildingblocksandassemblyrulesaregeneratedrecursively:theyarecompletelyde nedintermsofthepreviousand.
Weassumethatthedesignproblemhasaquanti ableobjectivevector-function,andcanbeformulatedasoptimizationproblemLet
(1)
Theproblem(1)overtherepresentationwitha xedsetofbuildingcompon-entsandassemblerulescanbesolvedusinganyofoptimizationmethods(GeroandKazakov,1995)butthestochasticalgorithmslikegeneticalgorithms(Hol-land,1975)andsimulatedannealing(Kirkpatricketal.,1983)lookmostprom-isingatthemoment.Wehavechosenthegeneticalgorithm.
Theevolutionarymethodhasthefollowingstructure:
Algorithm
.Takethesetofelementarybuild-(0).Initialization.Setcounterofiteration
andcorrespondingassemblyrules.Generatesomeingblocks
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering11
randompopulationof,calculateand.Settherelativethresholds;theyareusedduringanevolutionforthedesign’sranking
stagetodividethedesigninto“good”,“bad”and“neutral”samplingsets,thatis,thepartsofpopulationwhichexhibit()best,()worseandintermediaterel-ative tnesslevel.
(1)Evolutionofcomplexbuildingblocks.Foreverycomponentoftheobjective
dividethepopulationinto3groups:function
,“good”(
“bad”(,and“neutral”(therestofpopulation).
Determinecombinations,ofthecurrentbuildingblockswhichdistinguishthe“good”samplingsetfromthe“bad”onestatisticallysigni cantlyusinganyoneofthepatternrecognitionalgorithms.
.Addcorres-Addittothecurrentsetofbuildingblocks
pondingnewassemblyrulesto.
(2)putenewpopulationusingavailablein-formationaboutcurrentpopulation.Thecom-ponentsofbelongtothenewextendedand.Thedependsontheop-timizationmethodemployed.Ifthegeneticalgorithmhasbeenchosenthen
istobecalculatedusingstandardcrossoverandmutationoperations.Becausetheupdatedgrammarincludesthegrammarfromthepreviousgenerationthesearchmethodguaranteesthatthenewpopulationisbetterthanthepreviousone(atleastnoworse)andthenew“good”samplingsetisclosertosamplingsetofthedesignstatespaceofinterest.
(3)Repeatsteps(1)and(2)untilthestopconditionsaremet.
Thestopconditionsusuallyaretheterminationorslowingdownoftheim-provementinand/ortheendofnewbuildingblocksgeneration.
4.Example
Evolvingthetargetedrepresentation
Asanexamplewetaketheproblemofthegenerationofa2-dimensionalblockdesignonauniformplanargrid(derivedfrom(GeroandKazakov,1995)).Thereisjustoneelementarycomponenthere-asquareandtheeightassemblyrules(trans-formationrulesintermsofashapegrammar)whichareshowninFigure7.Ifthepositionwherethecurrentassemblyruletriestoplacethenextsquareisalreadytakenthenallthesquaresalongthisdirectionareshiftedtoallowtheplacementofnewsquare.Itisassumedthatthetransformationruleatthe-thassemblingstageis
-thstage.Thecharacterist-appliedtotheelementaryblockaddedduringthe
icsofinterestaregeometricpropertiesofthegenerateddesign.Inordertodemon-stratetheidea,assumethatthegenerateddesigncannotconsistofmorethan32
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
12
0.9JohnS.GeroANDVladimirA.Kazakov0.8
TOTAL FRACTION OF COMPLEX GENES 0.70.60.50.40.3
0.2
0.1020406080100GENERATIONS120140160180
Figure9.Thefractionofcompositebuildingblocksinthetotalpoolofbuildingblocksusedtoassemblethepopulationvs.generationnumber.Theobjectivefunctionhastwocomponents:theareaofclosedholesandthenumberofconnectionsbetweenholesandtheoutsidespace.Theinitialsetofbuildingblockscontainsonlyelementarybuildingblocks.Evolutionproceedsuntilitnaturallydiesoff.
elementarycomponents.Wegenerateanewpopulationduringthestage(2)oftheAlgorithmusingthemodi cationofthesimplegeneticalgorithmtailoredtohandlemultidimensionalobjectivefunctions(GeroandKazakov,1995).Weimplementaverysimplepatternrecognitionalgorithmbasedonthestatisticalfrequencyana-lysesofdoubleandtripleelementbuildingblockswithahighcut-offthresholdfortheacceptanceofthepatterns.Formorecomplexsystemsmoresophisticatedtechniqueisneeded.
Duringthe rstiterationwebeginwiththesetofbuildingblockswhichcon-tainsonlytheelementaryonesandsearchforthedesignswithmaximalareaofen-closedholesandmaximalnumberofconnectionsbetweentheholesandoutsidespace.Theevolutionwasallowedtoproceeduntilastableconditionwasreached.TheresultareshowninFigures9and10.Byplottingthefractionofthecomplexbuildingblocksinthetotalpoolofbuildingblocksusedtoassemblethepopula-tionatdifferentgenerationsFigure9,onecanseehowcomplexbuildingblocksbecomedominantandhowitsfractionreachesastablelevelafter110-120itera-tions.ThefractionsofbuildingblocksofdifferentcomplexityinthetotalpoolatdifferentgenerationareshowninFigure10.Onecanseethatduringthe rst40generationsthetotalfractionofcompositebuildingblocksarisesmonotonically.Forthe rst10generationsthisriseiscompletelyprovidedbytheincreasingnum-berof1-complexitycompositebuildingblocksinthepopulation.Then(from15to30generations)thefractionof1-complexityblocksremainsstablebutthenum-berof2-complexitybuildingblocksincreasesandprovidesthecontinuingincrease
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
0.8
1-COMPLEXITY2-COMPLEXITY3-COMPLEXITY4-COMPLEXITY5-COMPLEXITY6-COMPLEXITY7-COMPLEXITY8-COMPLEXITY130.7
FRACTION OF COMPLEX GENES 0.60.50.40.30.2
0.1
0020406080100GENERATIONS120140160180
Figure10.Thefractionofcompositebuildingblockswithdifferentcomplexitiesinthetotalpoolofthebuildingblocksusedtoassemblethepopulationvs.generationnumber.This gureshowsthebuildingblocksofdifferentcomplexitieswhicharesummedtoproducethetotalfractionshowninFigure9.
inthetotalfractionofcompositebuildingblocks.Fromgenerations40to70thistotalfractionisstablewithapproximatelyhalfofbuildingblocksof1-complexityandhalfof2,3and4-complexities.Thenthenumberof1-complexityblocksandtotalnumberofcomplexblocksdeclinessharplyandfrom70until110generationatransitionalprocessoccurswithacomplexredistributionofpopulationsbetweenrepresentationswithdifferentcomplexities.Attheendofthisperiodthebuildingblocksof8-complexitysaturatethepopulationwhenthefractionsoftheothercom-plexbuildingblocksareshiftedtowardsanoiselevelonly.OneoftheevolutionpathsinthespaceofcomplexbuildingblocksisshowninFigure11(a).SomeofthedesignsproducedareshowninFigure11(b).Herearrowsshowwhichpre-viouslyevolvedcompositebuildingblocksareusedtoassemblethenewbuildingblock.The0-complexityblockanditscontributionsareomitted.Aswealreadynotedcompositeblocksofthesamecomplexitylevelsometimeshavedifferentnumbersofelementarycomponents.Coincidently,the5-complexityblockisre-producedagainintherepresentationsof6-,7-and8-complexitiesandisoneofthedominantblocksattheendoftheevolutionaryprocess.
Usingtargetedrepresentation.
Thesetoftargetedbuildingblocksevolvedduringthisprocessisthenusedasaninitialsetofbuildingblocksduringthesecondexperimentwhenweproducethedesignswithmaximaltotalareaofholesinsideandmaximalnumberofconnec-tionsbetweentheseholesinsidethestructure.Herethe tnessesareclosetobut
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
14JohnS.GeroANDVladimirA.
Kazakov
Figure11.(a)Anexampleoftheevolutionarypathsintheevolutionofacomplexbuildingblock,(b)someofthedesignsproducedusingthesetofevolvedcomplexblocks.
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
015TOTAL FRACTION OF COMPLEX GENES020406080100GENERATIONS120140160180
Figure12.Thefractionofcompositebuildingblockinthetotalpoolofbuildingblockusedtoas-semblethepopulationvs.generationnumber.Inthisexperimenttheobjectivefunctionisthenum-berofclosedholesandthenumberofconnectionbetweentheclosedholesinsidethestructure.Theinitialsetofbuildingblocksisinheritedfromthe rstexperimentandisthetargetedrepresentation.notthesameasthoseusedtoevolvethetargetedrepresentation.Thisexperimentisusedtotestwhetherthetargetedrepresentationislikelytobeusedmorethantheoriginal,elementarybuildingblocks.Ifthetargetedrepresentationisusedratherthantheelementarybuildingblocksthenwehaveachievedourgoalofevolvingarepresentationcanbeusedtoproducedesignswhichexhibitdesiredcharacterist-icsmorereadily.TheresultsareshowninFigures12and13.Onecanseethatthefractionofthecompositebuildingblocksusedtoproducethesedesignsreachesthesaturationlevelduringthe rstfewiterations.Thevisibleredistributionsofthepopulationbetweenthecompositebuildingblocksof5,6and7-complexitiesarepurelysuper cial-thisredistributionoccursbetweenthesamecompositebuildingblockswhicharepresentinalltheserepresentations.Evolutionoftherepresenta-tiondoesnotoccurduringthisexperiment-nonewcomplexbuildingblockwereevolved.Thiscanbeinterpretedasanindicationofclosenessofthetargetedrep-resentationsforbothproblems.Soifthetargetedrepresentationisevolvedforonesetofobjectivesthenitcanbeusefullyappliedtoanyoftheobjectivesetswhichareonlyslightlydifferenttoit.
Effectsofincompleteevolution
Inthisexperimentwerepeatthe rstiterationbutstoptheevolutionprematurelyafteronly60generations.Afterthiswerepeattheseconditerationusingtheevolvedincompletesetofcompositebuildingblocks.TheresultsareshowninFigures14
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
16
0.9JohnS.GeroANDVladimirA.Kazakov0.8
0.7
FRACTION OF COMPLEX GENES 0.60.51-COMPLEXITY2-COMPLEXITY3-COMPLEXITY4-COMPLEXITY5-COMPLEXITY6-COMPLEXITY7-COMPLEXITY8-COMPLEXITY0.40.3
0.2
0.1
0020406080100GENERATIONS120140160180
Figure13.Thefractionofcompositebuildingblockswithdifferentcomplexitiesinthetotalpoolofthebuildingblockusedtoassemblethepopulationvs.generationnumberintheexperiment.
1
0.9
TOTAL FRACTION OF COMPLEX GENES 0.80.7 0.60.50.40.3
0.2
0.10102030GENERATIONS405060
Figure14.Thefractionofcompositebuildingblockinthetotalpoolofbuildingblockusedtoas-semblethepopulationvs.generationnumber.Inthisexperimenttheobjectivefunctionisthenumberofclosedholesandthenumberofconnectionsbetweentheclosedholesinsidethestructure.Theini-tialsetofbuildingblocksisinheritedfrom rstiterationwhichhasbeenprematurelyterminatedatgeneration60.
and15.Inthiscasetheevolutionoftherepresentationcontinuesforaboutafur-ther10generationsandweendupwiththesamesetofevolvedcompositebuildingblocks.Thesaturationofthepopulationwiththecompositebuildingblocksisalsocompletedafterthese10generations.Thus,onecanstarttoevolvearepresenta-
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
0.9170.8
0.7
FRACTION OF COMPLEX GENES 0.60.51-COMPLEXITY2-COMPLEXITY3-COMPLEXITY4-COMPLEXITY5-COMPLEXITY6-COMPLEXITY7-COMPLEXITY8-COMPLEXITY0.40.3
0.2
0.1
00102030GENERATIONS405060
Figure15.Thefractionofcompositebuildingblockswithdifferentcomplexitiesinthetotalpoolofthebuildingblockusedtoassemblethepopulationvs.generationnumberinthethirdexperiment.tionforonesetofobjectivesandthencontinueitforanothercloselyrelatedsetofobjectives.
Ifwecommencebytreatingtheproblemasoneof ndingimproveddesignsthenfromacomputationalviewpointthisformofevolutionspeedsuptheconver-
(intermsofthenumberofgenerationsgencetoimproveddesignsbyupto
required)whencomparedwithstandardgeneticalgorithms.Itappearsthattheuseofatargetedrepresentationcanleadtotheproductionofdesignswhicharelocallyoptimal.
However,ifweusethecompletionevolutionapproachpresentedinthesecondexperimentwegetfurtherimprovementsinperformance.WewillleavetotheDis-cussionsectionfurtherdiscussionoftheotheradvantagesoftheapproachpresen-ted.
5.Discussion
Theanalysisjustpresentedcanbeeasilyextendedtoincludegeneralobjectgram-marsoftypesdifferenttothekindergartengrammar.Theproposedapproachcanbeconsideredasanimplementationofthesimplestversionofthegeneticengin-eeringapproachtothegenericdesignproblem.Fromthetechnicalpointofviewthealgorithmpresentedisamixtureofastochasticsearchmethod(whichmaybeageneticalgorithm)andapatternrecognitiontechnique.
Thegeneticengineeringapproachcanbeappliedinasimilarfashiontotheproblemofthegenerationofa“suitable”shapegrammar(GeroandKazakov,1995)wherethecomplexbuildingblockscorrespondtotheevolvedgrammarrules.
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
18JohnS.GeroANDVladimirA.Kazakov
Asalreadymentionedintheanalysisofthenumericalexperiment,theevolvedrepresentationsarehighlyredundant-thesamecompositebuildingblocksareevolvedmanytimesalongthedifferentbranchesoftheevolutionarytrees.Theredundancylevelofthecurrentsetofcompositebuildingblockscanbereducedinanumberofdifferentways.Thesimplestisjusttodeletealltheredundantcopiesfromthecurrentset.Inthegeneralcase,wehaveto ndtheminimalrepresentationofthesubspacewhichcanbegeneratedusingthecurrentsetofcomplexbuildingblocks.Theintroductionofideasandmethodsfromgeneticengineeringintodesignsystemsbasedongeneticalgorithmsopensupanumberofavenuesforresearchintobothevolutionary-baseddesignsynthesisandintomodi edgeneticalgorithms.Indesignsystemsbasedonsuchmodi edgeneticalgorithmsitispossibletocon-sidertwodirections.
The rstistotreatthesequenceofthegeneswhichresultsincertainbehavioursor tnessperformancesasaformof‘emergence’,emergenceoftheschemarepres-entedbythatgenesequence.Theuseofthegeneticallyengineeredcomplexgeneschangesthepropertiesovertimeofthestatespaceswhicharebeingsearched.Thisallowsustoconsidertheprocessasbeingrelatedtodesignexplorationmodelledinaclosedworld.Theprecisemannerinwhichtheprobabilitiesassociatedwithstatesinthestatespacechangeisnotyetknown.Clearly,thisisalsoafunctionofwhethera xedlengthgenotypeencodingisusedornot.Ifavariablelengthgenotypeencodingisusedwiththegeneticallyengineeredcomplexgenesthentheshapeofthestatespaceremains xedbuttheprobabilitiesassociatedwiththestateswithinitchange.Ifa xedlengthgenotypeencodingisusedwiththege-neticallyengineeredcomplexgenesthentheshapeofthestatespacechangesinadditiontotheprobabilitiesassociatedwithstatesinthestatespace.
Thesecondistotreatthegeneticallyengineeredcomplexgenesasameansofdevelopingarepresentationforpotentialdesigns.Afundamentalpartofdesign-ingisthedeterminationofanappropriaterepresentationofthecomponentswhichareusedinthestructure(Gero,1990)ofthedesign.Thisispartofthataspectofdesigningcalled‘formulation’,iethedeterminationofthevariables,theirre-lationshipsandthecriteriabywhichresultingdesignswillbeevaluated.Inmostcomputer-aideddesignsystemsthecomponentsmapdirectlyontovariables.Fur-ther,insuchsystemsthevariablesarespeci edattheoutset,asaconsequencethereisanunspeci edmappingbetweenthesolutionscapableofbeingproducedandthevariableschosentorepresenttheideaswhicharetobecontainedintheresultingdesigns.Thegeneticengineeringapproachdescribedprovidesameansofautomat-ingtherepresentationpartoftheformulationprocess.Thelevelofgranularityisdeterminedbythestabilityconditionoftheevolutionaryprocessorcanbedeterm-inedbytheuser.Thetargetedbuildingblocksprovideahigh-levelstartingpointforalllaterdesignswhicharetoexhibittherequiredcharacteristicsasevidencedintheearlierdesigns.Itisthislatterrequirementwhichismetbythisformalmethod.Thefollowingsimplepicturecanbeusedtosummarizethemodeldescribedin
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering19thispaper.Agroupofchildrenareplayingwiththe“Lego”gameusingnotmorethan50squares.Theyjointhemtogetherandwanttobuildtheobjectwiththelargestnumberofclosedspacesinside.Aftereachchildhasbuilthisorherob-jectthesupervisortriesto ndacombinationofsquareswhichispresentinmanyofthebestdesignsbutispresentinnoneoronlyinafewofunsatisfactorydesigns.Thenhemakesthiscombinationpermanentbygluingitscomponentstogetherandaddsabunchofsuchpermanentcombinationstothepoolofbuildingelementsavailabletothechildren.Thenthechildrenmakeanothersetofobjectsusingthesenewbuildingblocksaswellasanoldones.Thesupervisortriesto ndanother“good”compositeblockandtheprocessisrepeated.Thus,twostepsoccurineachcycle: rstchildrenmakeasetofnewdesignsfromcurrentlyavailableblocksandcombinationofblocksandsecondthesupervisortriestosingleouttheadditionalcombinationofblocksthatshouldbeemployed.Iftherearenosuchcombinationswhichdistinguish“good”designfromthe“bad”onesthenwewillnotgetnewcombinationsbutonlytheimproveddesigns.
Style
Thechoiceofparticularvariablesandcon gurationsofvariablesisadetermin-antofthestyleofthedesign(Simon,1975).Thelabel‘style’canbeusedinatleasttwoways:eithertodescribeaparticularprocessofdesigningorasameansofdescribingarecognizablesetofcharacteristicsofadesign.Thus,itispossibletotalkaboutthe‘Gothic’styleinbuildingsorthe‘hightech”styleofconsumergoods.Preciselywhatgoestomakeupeachofthesestylesisextremelydif culttoarticulateeventhoughweabletorecognizeeachofthesestyleswithverylittledif culty.Anappropriatequestiontoposeis:howcanweunderstandwhatpro-ducesastyleduringtheformulationstageofadesigningprocess?Thisbringsusbacktotheconceptsdescribedinthispaper.
‘Thehistoryoftasteandfashionisthehistoryofpreferences,ofvariousactsofchoicebetweendifferentalternatives......[But]anactofchoiceisonlyofsymptomaticsigni cance,isexpressiveofsomethingonlyifwecanreallywanttotreatstylesassymptomaticofsomethingelse,wecannotdowithoutsometheoryofthealternatives’(Gombrich,quotedfrom(Simon,1975)).Ifweuseaparticularstyleasthe tnessofinterestthenitshouldbepossibletoutilisethegeneticengineeringapproachdescribedinthispapertodetermineifthereisauniquesetofgenesorgenecombinationswhichiscapableofbeingtheprogenitorsofthatstyle.Forthistooccursatisfactorilyaricherformofpatternrecognitionwillbeneededthanthatalludedtohere.Wewillneedtobeabletodetermineawidervarietyofgeneschemasinthegenotypesofthosedesignswhichexhibitthedesiredstyle.
Theuseofgeneticengineeringinevolvingschemasofinterestopensupapo-tentialsubsymbolicmodelofemergenceincludingtheemergenceofdomainse-