大学选修课论文有这个的参考下吧
关于毕达哥拉斯定理的证明
专业:××××× 姓名:×× 指导老师:××
摘要:对于几何原本中毕达哥拉斯定理的证明过程,欧几里得以定义,公设,公理的方
式进行推理,现将所有涉及毕达哥拉斯定理的证明命题提出。
关键词:毕达哥拉斯定理,定义,公设,公理。
正文:
定义:1. 点是没有部分的东西
2.线只有长度而没有宽带 3.一线的两端是点
4.直线是它上面的点一样地平放着的线 5.面只有长度和宽带 6.面的边缘是线
7.平面是它上面的线一样地平放着 8. 平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度. 9. 当包含角的两条线都是直线时,这个角叫做直线角. 10. 当一条直线和另一条直线交成邻角彼此相等时,这些角每一个被叫
做直角,而且称这一条直线垂直于另一条直线。
11. 大于直角的角称为钝角。 12. 小于直角的角称为锐角 13. 边界是物体的边缘
14. 图形是一个边界或者几个边界所围成的
15. 圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个
点所连成的线段都相等。
16. 这个点(指定义15中提到的那个点)叫做圆心。
17. 圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段,
且把圆二等分。
18.半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心
相同。