基因芯片 差异表达
1892
geneexpressionmicroarrays[J].GenetRes,2001,77:123
[2]KerrMK,MartinM,ChurchillGA.Analysisofvariance
forgeneexpressionmicroarrays[J].JCompBiol,2000,7:
819
[3]BrownMP,GrundyWN,LinD,etal.Knowledgebased
analysisofmicroarraygeneexpressiondatabyusingsup2
port,vectormachines[J].ProcNatlAcadSci,2000,97:
262
[4]BolstadBM,IrizarryRA,AstrandM,etal.Acomparison
ofnormalizationmethodsforhighdensityoligonucleotide
arraydatabasedonbiasandvariance[J].Bioinformatics,
2000,19:185
[5]EisenMB,SpellmanPT,BrownPO,etal.Clusteranalysis
anddisplayofgenome2wideexpressionpatterns[J].Proc
NatlAcadSci,1998,95:14863
[6]伍亚舟,张彦琦,易东,等.基因芯片表达数据的标准化
策略研究[J].第三军医大学学报,2004,26(7):594
[7]TusherV,Tibshiranir,ChuC.Significanceanalysisof
microarraysappliedtoionizingradiation[J].
ProcNatAcadSci,2001,10[8]ReinerA,differen2
tiallyexpressedratecontrol2
lingprocedures[J].,2003,19:368
[9]YeungKY,HaynorDR,RuzzoWL.Validatingclustering
forgeneexpressiondata[J].Bioinformatics,2001,17:309
[10]EisenMB,BrownPO.DNAarraysforanalysisofgene
expression[J].MethEnzymol,1999,303:179
[11]EisenM,SpellmanPL,BrownPO,etal.Clusteranalysis
anddisplayofgenomewideexpressionpatterns[J].Proc
NatlAcadSciUSA,1998,95:14863
[12]RossDT,ScherfU,EisenMB,etal.Systematicvariation
ingeneexpressionpatternsinhumancancercelllines[J].
NatGenet,2000,24:227
[13]TamayoP,SlonimD,MesirovJ,etal.Interpretingpat2
ternsofgeneexpressionwithself2organizingmaps:
methodsandapplicationtohematopoieticdifferentiation
[J].ProcNat’lAcadSciUSA,1999,96:2907[14]MorganBJT,RayAPG.Non2uniquenessandinversionsinclusteranalysis[J].ApplStat,1995,44:117[15]KohonenT.SelfOrganizingMaps[M].Springer,Berlin,1995.1[16]TamayoP,SlonimD,mesirooJ,etal.Interpretingpat2ternsofgeneexpressionwithself2organizingmaps:meth2odsandapplicationtohematopoieticdifferentiation[J].ProcNatlAcadSci,1999,96:2907[17]BrownM,GrundyW,LinD,etal.Supportvectorma2chineclassificationofmicroarraygeneexpressiondata./article/brown99support.ht2ml[18]D’haeseleerP,LiangS,SomogyiR.Geneticnetworkinfer2ence:fromco2expressionclusteringtoreverseengineer2ing[J].Bioinformatics,(8):707[19]Liang,,R.Ageneralreverseengi2ofgeneticnetworkarchi2Biocomput,1998,3:18[R,SniegoskiCA.Modelingthecomplexityofgeneticnetworks:understandingmultigenicandpleiotro2picregulation[J].Complexity,1996,1:45[21]ChenT,HeHL,ChurchGM.Modelinggeneexpressionwithdifferentialequations[G].PacSympBiocomput,1999,4:29[22]de2HoonMJ,ImotoS,KobayashiK,etal.Inferringgeneregulatorynetworksfromtime2orderedgeneexpressiondataofBacillussubtilisusingdifferentialequations[G].PacSympBiocomput,2003,8:17[23]WeaverDC,WorkmanCT,StormoGD.Modelingregula2torynetworkswithweightmatrices[G].PacSympBio2comput,1999,4:112[24]BellensonJL.ExpressiondataandBioinformaticschallen2ges.InMarkSchenaed.DNAMicroaarys2apracticalap2proach[M].Oxford:OxfordUniversityPress,1999.97[25]刘同华.基因芯片技术及其在肿瘤研究中的应用[J].重庆医学,2003,32(9):1266
综 述
新的凋亡抑制蛋白Livin的研究及临床意义
李中福综述,王子卫审校
(重庆医科大学附属第一医院普外科 400016)
关键词:凋亡抑制蛋白;Livin;凋亡;肿瘤;治疗
中图分类号:R730.21文献标识码:A
细胞凋亡是由多种因子介导的细胞主动死亡的过程,对机
体或组织维持内环境的稳定和生物体的生长发育、生命周期、
衰老死亡都有着重要的作用。凋亡抑制也是肿瘤发生的重要
机制,凋亡通路的紊乱、促进凋亡因子的抑制、凋亡抑制因子过
表达以及凋亡基因的表达失控都会导致肿瘤的发生、发展。而
且,凋亡紊乱还导致肿瘤细胞对化疗药物的抵抗。在肿瘤的治
疗过程中如何促进肿瘤细胞凋亡已经引起了人们极大的研究文章编号:167128348(2005)1221892204兴趣。近年来,凋亡抑制蛋白引起人们的高度重视,Livin作为一种新发现的凋亡抑制蛋白(IAP)抑制细胞凋亡,与肿瘤的发生、发展及预后相关,将为肿瘤的治疗提供新靶点。1 凋亡抑制蛋白(IAP)家族目前发现的IAP家族成员有:Livin、c2IAP1、c2IAP2、NIAP、XIAP、IAP22、Bruce/Apollon、Surivin。IAP家族一个共同的特点:在其蛋白质的氨基端至少有1~3个高度保守的约