毕业设计论文 运动目标检测中阴影去除算法的研究与实现
运动目标的检测是视频监控系统的首要问题,运动目标提取的好坏直接影响到之后的目标跟踪、目标分类等问题。只要有光线存在的地方都免不了阴影的存在,特别是在室外环境下,光线会随着天气的变化而变化,而且光线的方向、强弱等都会因时间的不同而发生无规律的变化,这些情况下阴影具有很强的不确定性。阴影和运动目标与背景之间都有很大的灰度差值,而且阴影与产生阴影的目标具有相同的运动特征,因此阴影常常被错误地检测成前景。这样就会产生与阴影有关的一系列问题,如阴影会造成运动目标形状的变化、目标的合并、甚至目标丢失,这些问题的存在会对后续的目标跟踪、识别、分类产生很大的负面影响。因此,近年来阴影检测和阴影的去除成为智能视频监控技术中研究的一个热点和重点。
去除伴随运动目标的阴影,进一步提高运动目标检测的准确性是非常重要的。目标检测算法本身并不能识别阴影和运动目标以及消除阴影,虽然目前阴影检测算法的准确性相对较高,但还是存在着一定的缺陷,因此在现有阴影检测算法的基础上,提出一种定量和定性评估更高的阴影检测算法是非常必要的,消除阴影的影响也更有利于后续的目标跟踪、分类和识别[3]。
1.4 课题主要研究工作及工作安排
本文主要研究运动目标检测中的阴影去除,然而阴影的检测与去除通常与运动检测联系在一起,因此本文先将对目前比较经典的三种运动目标检测算法进行深入分析,通过对运动目标检测中这三种算法的比较,最终确立一种适用性比较强的基于混合高斯背景模型的背景差方法。然后针对前景检测中存在的阴影,研究在混合高斯背景模型之上的阴影检测算法。
具体地讲,本文的主要研究内容包括以下几个方面:
(1) 运动目标检测算法的研究
在深入分析现有的检测算法基础上,提出一种改进的混合高斯背景模型的目标检测算法,能较好地解决场景中的光线、天气等环境的变化,以及存在动态背景的情况。
(2) 阴影检测与去除算法的研究
针对前景检测中的阴影,在理解阴影产生机理以及分析了现有阴影检测算法的基础上,提出一种基于RGB颜色空间的阴影检测算法。
本文各章内容安排如下:
第一章绪论,对当前视频监控系统的发展进行总结,然后详细分析了智能视频监控系统中的关键技术,最后介绍了本文的研究内容及论文组织。
第二章基础理论,介绍了与本课题相关的颜色模型、数学形态学算子等基础知识。
第三章运动目标的检测,简单地对目前运动目标检测的集中经典算法进行分析,在对几种方法进行比对的基础上,确定一种较好的运动目标检测方法,即基于混合高斯背景模型的运动目标检测方法。
第四章阴影的去除,首先对阴影产生的机理原因及影响进行了分析,然后对目标阴影