第1期 杨耿等:等离子体对高功率微波的防护
表3 实验结果
测量条件
接收端 微波 信号值/μV 衰减量/dB
93
参考文献:
95 0 32 9.5 23 12.3 4.5 26.5
收、发喇叭间不放置任何物质 收、发喇叭间有一层25mm的等离子体 收、发喇叭间有一层50mm的等离子体 收、发喇叭间有两层厚度分别为25mm、 50mm的等离子体
5 结论
随着定向能武器的不断发展,高功率微波对电子设备的破坏已经引起各国广泛地关注。由于航天环境的特殊性,常规的防护手段往往难以达到卫星电子设备所需的防护要求。本文提出的多层等离子体防护结构对电磁波的反射和吸收效应,能使透射进入工作设备的微波功率低于干扰或破坏阈值。 当等离子体频率为30GHz时,图1所示的防护结构会反射频率低于30GHz的电磁波,频率小于30GHz的高功率微波武器不能对防护设备造成危害。对于频率处于31~80GHz间的高功率微波武器,计算结果表明:电磁波透射过防护结构后的透射功率和入射功率的比值在0.3%~2.7%之间,防护结构对不同频率的电磁波防护效果不一样。从表1中可以看出装置对频率在31~80GHz之间的微波武器的最小防护距离可达5km左右。
验证性的实验表明,增加等离子体层数比增加等离子体厚度对电磁波的衰减效果更明显。
[1] Li Hui, Wang Zibin. Development of foreign high-
powered microwave weapons and prospect of future application in space-based target defense and air defense [R]. ADA306465, 1996.
[2] Guoqi Ni, Benqing Gao, Junwei Lu. Research on high
power microwave weapons [A]. IEEE APMC 2005 Proceedings [C]. 2005.
[3] 赖祖武. 高功率微波及核电磁脉冲的防护问题 [J].
微波学报, 1995, 11(1): 1.
[4] Gregdire D J. Electromagnetic wave propagation in
unmagnetized plasma [R]. ADA250710, 1992.
[5] Mathew J. Electronically steerable plasma mirror based
radar-concept and characteristics [A].IEEE 1996 Radar Conference [C]. 1996.
[6] 孙爱萍, 李丽琼, 邱孝明, 等. 电磁波与非磁化等离
子体的相互作用 [J]. 核聚变与等离子体物理, 2002, 22(3): 135.
[7] 庄钊文, 袁乃昌, 刘少斌, 等. 等离子体隐身技术
[M]. 北京: 科学出版社, 2005.
[8] 唐德礼,孙爱萍, 邱孝明. 均匀磁化等离子体与雷达
波相互作用的数值分析 [J]. 物理学报, 2002, 51(8): 1724.
[9] 夏新仁, 邓发升. 等离子体隐身技术的特点及应用
[J]. 雷达与对抗, 2002, 1: 17.
[10] 莫锦军, 刘少斌, 袁乃昌. 等离子体隐身机理研究
[J]. 现代雷达, 2002, 24(3): 10.
[11] Igor A, Lock K W. Plasma stealth antenna for the U S
Navy [A]. IEEE International Conference on plasma Science [C]. Walliamsburg, VA, CAT: IEEE, 1998.
Protection against high power microwave using plasma
YANG Geng, TAN Ji-chun, SHENG Ding-yi, YANG Yu-chuan
(Science college, National University of Defense Technology, Changsha 410073)
Abstract: Protection against high power microwave using plasma was proposed. A reflection/absorption sandwich model of “medium slab-plasma slab-medium slab-plasma slab” was established, where the thickness for the un-magnetized uniform plasma is 50mm, the plasma frequency 30GHz, and collision frequency 70GHz. Then the transmitted power of electromagnetic wave and the minimal protecting-distance of protector were calculated. The results show that for a microwave source with 10GW power, 100ns pulse width, 100m2 antenna area (with efficiency of 50%), the emitted microwave will be reflected when the frequency is less than 30GHz; or the minimal protecting-distance of protector is about 5km when the frequency is within 31~80GHz.
Key words: HPM; Plasma; Transmitted power; Protection