We consider a novel class of Weyl-conformally invariant p-brane theories which describe intrinsically light-like branes for any odd world-volume dimension, hence the acronym WILL-branes (Weyl-Invariant Light-Like branes). We discuss in some detail the prop
wherea(τ)istheconformalfactorofthespace-likepartoftheinternalmembranemetric(lastEq.(46)).Eqs.(47)areofthesameformastheequationsofmotionforamasslesspoint-particlewithaworld-line“einbein”e=a 1movinginMd.Inotherwords,thesimplesolutionabovedescribesamembranelivingintheextra“internal”dimensionsandmovingasawholewiththespeedoflightin“ordinary”space-time.
NoticethatalthoughtheWILL-braneiswrappingtheextradimensionsinatopologicallynon-trivialway(cf.secondEq.(46)),itsmodesremainmasslessfromtheprojectedd-dimensionalspace-timepointofview.Thisisahighlynon-trivialresultsincewehavehereparticles(membranemodes),whichaquireinthiswaynon-zeroquantumnumbers,whileatthesametimeremaingmassless.Incontrast,oneshouldrecallthatinordinaryKaluza-Kleintheory(forareview,see[11]),non-trivialdependenceontheextradimensionsispossibleforpointparticlesorevenstandardstringsandbranesonlyataveryhighenergycost(eitherbymomentummodesorwindingmodes),whichimpliesaveryhighmassfromtheprojectedD=4space-timepointofview.
4.3Example:WILL-MembraneinaPP-WaveBackground
Asa nalnon-trivialexampleletusconsiderWILL-membranedynamicsinexternalplane-polarizedgravitationalwave(pp-wave)background:
(ds)2= dx+dx F(x+,xI)(dx+)2+dxIdxI,
andemployin(32)–(36)thefollowingnaturalansatzforXµ(hereσ0≡τ;I=1,...,D 2):
X =τ,X+=X+(τ,σ1,σ2),XI=XI(σ1,σ2).(49)
Thenon-zeroa neconnectionsymbolsforthepp-wavemetric(48)are:Γ ++= +F,Γ+I= IF,
1ΓI++=(48)
2γijγ kX lX=0,klII i
G R
4Fµν(A)Fκλ(A)GµκGνλ+SWILL brane,
(52)whereFµν(A)= µAν νAµ,and:
1SWILL brane= d3σΦ( )FabFcdγacγbd qd3σεabcAµ aXµFbc.(53)
NotetheappearanceofanaturalWeyl-conformalinvariantcouplingoftheWILL-branetotheexternalspace-timeelectromagnetic eldAµ–thelastChern-Simmons-liketermin(53).ThelatterisaspecialcaseofaclassofChern-Simmons-likecouplingsofextendedobjectstoexternalelectromagnetic eldsproposedinref.[10].
TheEinstein-Maxwellequationsofmotionareofthestandardform:
Rµν 1