网络接口
MAX3485E/MAX3490E/MAX3491E没有摆率限制,能够支持更高的数据速率。然而,较高数据速率要求较快的边沿速率,因而产生较大的高频谐波。这些谐波增加了EMI辐射,也限制了系统对不恰当的终端匹配的承受能力。
图3. MAX3483E/MAX3488E传输125kHz信号时驱动电路的输出波形和FFT曲线
MAX3483E和MAX3488E对摆率加以限制,因此,最大数据速率降至250kbps甚至更低,这对于电表应用已经足够了。摆率的降低也限制了高频谐波,不但减小了EMI,而且解决了不恰当的终端匹配所带来的问题。
热插拔 在多点系统中,例如RS-485,保证只有一个发送器工作非常关键。如果两个或多个发送器处于工作状态,将会出现总线竞争,导致误码。通过软件可以部分解决总线通信中的误码问题,但是硬件工程师应首先避免出现这些误码。Maxim的热插拔特性解决了总线竞争时出现的两种常见问题:
1. 收发器在已经工作的总线上首次上电。
2. 在已经工作的系统中带电插入收发器卡。
这两种情况下,驱动RS-485收发器的微控制器(µC)将重新复位。大量µC使其I/O口进入三态。一旦软件开始运行,微处理器引脚将最终配置为合适的状态。但在初始上电与引脚正确配置完成之间会出现问题,主要问题是,RS-485收发器的发送使能(DE)引脚将“看到”一个逻辑高电平。出现这一问题是由于噪声或漏电流将三态引脚上拉至高电平。
Maxim的热插拔电路通过两个步骤解决这一问题。在第一个10µs期间,RS-485收发器上电,通过5k电阻的600µA强下拉电流将DE引脚拉低,强下拉电流使DE引脚的所有电容放电。10µs后,采用100µA下拉电流保持逻辑低电平不受漏电流和噪声的影响。在外部电源将DE引脚拉高之前,100µA的下拉电流将一直保持有效。一旦引脚出现高电平,关闭100µA电流源,RS-485收发器正常工作(参见图4)。这一特性确保RS-485收发器的发送器为三态,避免总线竞争。