S.Hashemietal./FluidPhaseEquilibria246(2006)131–136
135
Table4
Hydrate–liquidwaterexperimentaldataformethane–waterandcarbondioxide–water(*)systemsTrange(K)Prange(bar)No.ofpointsReferenceAARE(%)274.4–280.235–656[18]2.9276.2–281.750–14416[23]9.0274.0–278.2
20–60
10*
[19]
5.2
andthereferenceenthalpydifferencehydrateandpurewater,i.e., µMT Lbetweentheunoccupied
0(T)and hMT L0(T),atthereferencetemperature,werew0optimizedusingw
0three-phase(H–Lw–V)equilibriumdata.
Table3showsthe(H–Lw–V)datausedtooptimizethemodel,forbothmethane–water(69points)(131points)systems. µMT Landcarbondioxide–water
0(T)usedinthepresentstudyhasavalueof1256J/mol,w
0comparedbyHolderetal.[6].Similarly, hMT toL1245J/mol,asreported
0(T)usedinthecurrentworkhasavalueof 4822J/mol,w
0comparedto 4327J/mol,asreportedbyHolderetal.[6].
Table4presentsthehydrate–liquidwaterreferencesusedtoevaluatethemodelaccuracyunder(H–Lw)equilibriumforbothmethane–water(22points)andcarbondioxide–water(10points)systems.TheexperimentaldataofYangetal.[25]formethane–waterwasnotusedasitwasfounderroneousbyKimetal.[23].
Modelpredictionsofmethaneandcarbondioxidesolubil-ityinwaterusingthere-optimizedparametersaredisplayedinFigs.3and4,respectively.Singlepointsinthe gurescor-respondtothedataobtainedbyServioandEnglezos[18,19].Usingthenewlyoptimizedparameters,thecurrentmodelpre-dictsmethanesolubilityinwaterunder(H–Lw)equilibriumwithanAAREof2.9%forthesixdatapointsofServioandEngle-zos[18]and9.0%forthesixteendatapointsofKimetal.[23].Theoptimizedmodelpredictscarbondioxidesolubilityinwaterunder(H–Lw)equilibriumwithanAAREof5.2%fortendatapointsofServioandEnglezos[19].ResultsaresummarizedinTable4
.
parisonofcalculatedmethanesolubilityinliquidwaterbythepresentmodelusingthere-optimizedparameterswithexperimentaldataofServioandEnglezos[18]
.
parisonofcalculatedcarbondioxidesolubilityinliquidwaterbythepresentmodelusingthere-optimizedparameterswithexperimentaldataofServioandEnglezos[19].
Thebiasofthemodel(Fm)wastestedusingastatisticaltech-niquesimilartothatproposedbyBollesandFair[33]:
Fnm=expln(xcal/xexp)
(14)
wherexcalisthesolubilitypredictedbythemodel,xexpisthesolubilitymeasuredexperimentallyandnisthenumberofdatapoints.Theresultingbiasfactorat(H–Lw)equilibriumis0.93and0.95formethane–waterandcarbondioxide–watersystemsrespectively.Thefactthatthebiasvaluesareslightlylowerthanonedemonstratesthatthemodelpredictionspresentonlyaslightnegativebiastowardstheexperimentaldata.
Asmentionedbefore,Henry’slawhasbeenusuallyemployedtodeterminethegassolubilityat(H–Lw)[18,19]aswellasat(H–Lw–V)[5].Incalculatingthe(H–Lw)solubility,ServioandEnglezos[18,19]assumedthatthe(H–Lw)experimentalpressurecouldbereplacedbythethree-phaseequilibriumpres-surecorrespondingtotheexperimentaltemperatureasexplainedbefore.Thisassumptionmayneedtheinterpolationofthethree-phaseequilibriumpressurefromtheexperimentaldataatcertaintemperatures.TheAAREofHenry’slawformethanesolubil-itywas2.4%forthesixexperimentaldatapointsofServioandEnglezos[18].Thein uenceofpressureonthegassolubilityinthehydrate–liquidwaterzoneisnotsigni cantovertherangeinvestigated.Therefore,aslightchangeinpressurefromtwo-phase(H–Lw)tothree-phase(H–Lw–V)equilibriumdoesnotsigni cantlyaffectthesolubility.However,thepredictedeffectofapressureincreaseonmethanesolubilityinthehydrate–liquidwaterzoneresultingfromHenry’slawisoppositetothepresentmodelandtoexperimentalobservations,seeFig.3.Henry’scon-stantisafunctionoftemperatureand,atagiventemperature,gassolubilityisproportionaltothefugacityofthegasinvaporphasewhichincreaseswithpressure.4.Conclusion
TheTrebble–BishnoiequationofstatewasappliedalongwiththevanderWaalsandPlatteeuw,andHoldermodelstopredictthegassolubilityinwaterat(H–Lw)equilibrium