资料
COMMUNICATIO
N
DOI:10.1002/adma.200602966
Structure-DependentElectricalPropertiesofCarbonNanotubeFibers**
ByQingwenLi,YuanLi,XiefeiZhang,SatishkumarB.Chikkannanavar,YonghaoZhao,AndreaM.Dangelewicz,LianxiZheng,StephenK.Doorn,QuanxiJia,DeanE.Peterson,PaulN.Arendt,andYuntianZhu*
Spuncarbonnanotube(CNT)fibershavegreatpotentialforconductingandsensingapplicationsowingtotheirunique,tunableelectricalproperties.[1–5]Herewereporttheelectrontransportpropertiesofneat,well-alignedCNTfibersspunfromarraysofmillimeter-longCNTs.Theconductivityofas-spunCNTfibersisaround595.2Scm–1atroomtemperature,anditsvariationwithtemperatureshowsasemiconductivebe-haviorfrom300to75.4K.Theelectrontransportwasfoundtofollowathree-dimensional(3D)hoppingmechanism.[6]Im-portantly,itwasfoundthatchemicaltreatmentsmaysignifi-cantlyaffecttheconductivitiesofas-spunfibers.OxidizingtheCNTfibersinairorHNO3increasedtheconductivities,whilecovalentbondingofAunanoparticlestotheCNTfibersre-markablyimprovedconductivityandchangedconductionbe-havior.Conversely,annealingCNTfibersinAr+6%H2at800°CorundertheCNTarraygrowthconditionsat750°Cledtoadramaticdecreaseinconductivity.
Owingtotheirconjugatedandhighlyanisotropic1Dstruc-tures,carbonnanotubes(CNTs)areafascinatingnewclassofelectronicmaterialsfromboththeoreticalandappliedstand-points.[7]TheexcellentconductivitiesofCNTsandtheirabil-itytocarryveryhighcurrentdensity,alongwiththeirhighthermalconductivity,chemicalstability,andmechanicalstrength,makeCNTsuniquelypromisingforabroadrangeofapplications,includingbuildingblocksfornanoscaleelectron-icdevices,microsensorsforbio-agentsandchemicals,andpowercablesforspaceshuttles.[8–10]TheelectricalresistivityqofindividualCNTshasbeenmeasuredunderballisticconduc-tionstobeaslowas10–6Xcm[11,12]forsingle-walledand
3×10–5Xcm[13,14]formultiwalledCNTs,respectively,indicat-ingthatCNTsmaybebetterconductorsthanmetalssuchascopperatroomtemperature.However,inmostcases,duetothepresenceofvariousdefectsorimpuritiesformedduringtheCNTgrowth,theconductivitiesofindividualCNTsareof-tenmuchlowerthanthoseunderballisticconductionwithnanotubesfreeofdefects.[15,16]
TheelectrontransportinCNTassembliesisdifferentfromthatinindividualnanotubes.Ithasbeenreportedthatsingle-walledcarbonnanotube(SWNT)fibers,eithersynthesizeddi-rectlybyverticalfloatingchemicalvapordeposition(CVD)methods[1,2]orextrudedfromasuper-acidsuspension,[3]ex-hibitroom-temperatureresistivitiesintherangeof1×10–4to7×10–4Xcm,whichisnearly100timeshigherthantheresis-tivitiesofsinglenanotubes.Theresistivitiesofmultiwalledcarbonnanotube(MWNT)fibersaretypicallyoneortwoor-dersofmagnitudehigherthanthatofSWNTfibers.[4,5]Suchlargedifferencesbetweensinglenanotubesandfiberassem-bliesmayarisefromahighimpuritycontent(suchasamor-phouscarbonandcatalyticparticles)inthefibers,whichmayprofoundlyaffectelectrontransportbycausingsignificantscattering,andcontactresistancesbetweennanotubes.
Therefore,twoapproachescanbeusedtoimprovetheelec-tricalconductivityofCNTfibers:1)minimizethecontactre-sistancesbetweennanotubesbyimprovingthealignmentofCNTsandbyincreasingthelengthsofindividualtubes;2)im-provetheconductivityofindividualCNTsbypost-synthesistreatments.ItwastheobjectiveofthestudyreportedheretousethesetwoapproachestoproduceCNTfiberswithhighconductivityandtostudythefundamentalconductionmecha-nismsoftheCNTfibers.
ThinandcleanCNTfibers(typically3lmindiameter)werespunfromarraysofwell-aligned,millimeter-longCNTs,whichweresynthesizedusingethyleneCVDonaFecatalystfilm.[17]BymeasuringtheresistanceofCNTfibersattemper-aturesfrom300Kto75.4K,weinvestigatedtheelectronicpropertiesofas-spunfibersandtheirpossibleconductingmechanisms.ItwasalsofoundthattheconductivityofCNTfiberscouldbetunedthroughmildpost-treatments.
ThespunCNTfiberswerepost-treatedwithfivedifferentprocedures:1)Annealinginairat480°Cforhalfanhourinanattempttocleanofftheamorphouscarbon,whoseoxida-tiontemperatureisoftenaround400°C.[18]2)Oxidizingindilute5MHNO3solutionat40°Ctocauseaweakchemical
–
[*]Dr.Y.T.Zhu,Dr.Q.W.Li,Y.Li,Dr.X.F.Zhang,
Dr.S.B.Chikkannanavar,Dr.Y.H.Zhao,A.M.Dangelewicz,Dr.L.X.Zheng,Dr.S.K.Doorn,Dr.Q.X.Jia,Dr.D.E.Peterson,Dr.P.N.Arendt
LosAlamosNationalLaboratoryLosAlamos,NM87545(USA)E-mail:yzhu@lanl.gov
[**]ThisworkwassupportedbytheLaboratoryDirectedResearchand
Development(LDRD)programofficeofLosAlamosNationalLabo-ratory.WethankDr.HonghuiZhouforherhelpinelectricalmea-surements.SupportingInformationisavailableonlinefromWileyInterScienceorfromtheauthors.
©2007WILEY-VCHVerlagGmbH&Co.KGaA,WeinheimAdv.Mater.2007,19,3358–3363
资料
COMMUNICATION
functionalization.[19,20]3)AnnealinginAr+6%H2atmo-sphereat800°Ctosaturatethedefectivestructures.[21]4)In-troducingmetallicgoldnanoparticlesontoCNTsbydippingfibersfunctionalizedby5MHNO3intoa0.01%HAuCl4eth-anolsolutionfor5min.[22]5)IntroducingcarbonparticlesbyarepeatedtreatmentofthefibersunderCNTarraygrowthconditions.[23]Allofthesetreatmentswerechosentointro-6.0
Ohm-cm *10-3)
5.5
5.0
vity (S/cm * 102)
( ducemildmodificationstotheCNTfiberssothattheirpris-yittictinestructurescouldbemaintainedwhiletheirelectricalvutis4.5
dnpropertiesweremodified.
sieoCFigure1AshowsatypicaluniformCNTfiberspunfromanRarrayofmillimeter-longCNTs.OwingtothethinFecatalyst4.0
usedinitssynthesis,thecatalystcontaminationinourCNTT (K)
arraysismuchlessthaninCNTfiberssynthesizedbythefloatingCVDmethod[1,2]andCNTarraysgrownonthickFeFigure2.Temperaturedependenceoftheresistivity(q)andconductivityfilms.[3,4,24,25]Moreover,CNTsalsoalignverywellinourspun(r)ofaspunCNTfiber.
fibers,astheycanonlybespunfromsuper-alignedCNTar-rays.[24,25]OurspunCNTfibershavegoodCNTalignmentandhighpurity[17]andthereforemayserveasagoodmodelsys-465.3Scm–1at300K,whichisabout22%lowerthanthefi-temtoinvestigatetheelectricalpropertiesofCNTassemblies.berfromanarrayof1.0mmCNTs.ThisindicatesthatCNTTheinsetinFigure1ArevealsthattheCNTsaremultiwalledfibersspunfromarraysoflongerCNTswillhavelowercon-(2–7walls)withanaveragediameterof7nmandthattheytactresistance.ThisislikelyduetothefactthatafibermadearemoredefectivethanSWNTsandgraphite.[26]Thisisevi-oflongerCNTswillhavefewerendconnectionsandlargerdentfromtheRamanspectrumshowninFigure1B,wherecontactareabetweenneighboringtubes.ForagivenspecifictheintensityoftheDpeakishigherthanthatoftheGpeak.contactresistance,thelargerthecontactarea,thesmallertheFigure2showsthetemperaturedependenceoftheresistiv-totalcontactresistance.Asaresult,ourCNTfiberismoreityqandconductivityrofaCNTfiberbetween75.4andconductivethanotherreportedCNTfibers,itsconductivity300K.Theresistivitydecreasesmonotonicallyandsmoothlybeingatleast49.5%higherthanthosereportedpre-from2.19×10–3Xcmat75.4Kto1.68×10–3Xcmat300K.viously.[3,4]
Conversely,theconductivityincreaseswithincreasingtemper-Thetemperaturedependenceofconductivitycanhelpwithature,from456.6Scm–1at75.4Kto595.2Scm–1at300K,in-understandingtheconductionmechanismofaCNTfiber.Un-dicatingasemiconductingbehavior,butwithmuchsmallerlikethatofasingletube,theresistivityofaCNTfiberisde-temperaturedependencethancommercialgraphiteandcar-rivedfromtwocomponents:theresistanceofindividualCNTsbonfibers.[27]Underthesamesynthesisandspinningcondi-andthecontactresistancebetweenCNTs.Asmentionedtionsexceptforthegrowthtime,theCNTfibersspunfromanabove,theresistivitiesofindividualtubesareoftentwoordersarrayof0.3mmlongCNTsshowedaconductivityof
ofmagnitudelowerthantheirassemblies,[3,4]whichsuggests
30000
B
1300
25000
1593
y
ti
s20000
netn15000
I10000
5000
Raman Shift (cm-1
)
Figure1.A)Scanningelectronmicroscopy(SEM)imageofaspunCNTfiber;thetypicaldiameterofthefiberusedinthestudyis3lm.Inset:Trans-missionelectronmicroscopy(TEM)imageshowingCNTsaremultiwalledwithanaveragediameterof7nm.B)Ramanspectrumofthespunfiber,re-vealingahighlydefectivestructureformedintheCNTs.
资料
COMMUNICATIO
N
thatthecontactresistancesattheinterfacialconnectionsofCNTsplayasignificantroleintheconductionbehaviorofaCNTfiber.Ingeneral,twomainmechanismscanbeusedtoexplaintheconductionbehaviorofsemiconductiveCNTs:variablerangehopping(VRH)[28]andtunnelingconduction(TC).[29]Theycanbedescribedwiththefollowingtwoequa-tions,respectively:rT1/2=exp(–B/T1/4)r=r0exp(–A/T1/2)
(1)(2)
whereristheelectricalconductivity,r0,A,andBarecon-stants,andTisabsolutetemperature.AsshowninFigure3,plottingourdataintheformln(rT1/2)versusT–1/4,basedonEquation1,givesamuchmorelinearplotthanlnrversusT–1/2,basedonEquation2,whichindicatesthattheconduc-tioninourspunfibersispredominantlycontrolledbythehop-pingmechanism.TheslightdeviationfromthestraightlineinFigure3Aathightemperatureswasprobablycausedbyelec-trontunnelingbetweensomeCNTs.
Inmoredetail,therelationshipbetweenconductivityandtemperatureinMott’svariablerangehoppingmodelcanalsobeexpressedasr∝exp(–A/T[1/(d+1)]),whereAisaconstantanddisthedimensionality.[6]TheplotoflnrversusT–1/4(ford=3),T–1/3(ford=2),andT–1/2(ford=1)Table1.EffectsofchemicaltreatmentsonthestructuresandelectricalpropertiesofCNTfibers.havelinearfittingcoefficientsof
ConductivityDpeakpositionGpeakpositionIG/IDSampleConductivity0.997,0.995,and0.992,respectively.
–1–1–1–1
[cm][cm]at75.4K[Scm]at300K[Scm]Thissuggeststhattheelectrontrans-Originalfiber456.6595.2130015930.67portinCNTfibersisconsistentwith
Annealedin642.7818.3130015980.54a3Dhoppingmechanism.Thisbe-airat480°C
haviorismostlikelyduetothede-AnnealedinAr+6%H2at29.370.0130015980.48
fectstructuresofCNTs,inwhich800°Celectronscannotbeconfinedinthe692.5969.0130015940.41Oxidizedin1DchannelsofCNTs,andinstead5NHNO3
Coatedwith907.41152.7130515980.52hopfromonelocalizedsitetoan-Aunanoparticlesother,orpossiblyfromoneCNTto
Re-growthat750°C55.371.1130015830.62
another.Theenergydifferencebe-
tweentheinitialandfinalstatesisbridgedbyanelectron–phononscatteringprocess.[30]
Thetwo-terminalcurrent–voltage(I–V)characteristicsofaspunCNTfiber(showninFig.S2,SupportingInformation)indicatealinearnatureoftheI–Vcurve,whichrevealsgoodohmiccontactsbetweentheCNTfiberandtheelectrodes.TheresistanceRasderivedfromthelinearI–Vcurveis2.2×103X,basedonR=qL/S,wherethelengthLis1mmandtheareaSis7.1×10–12m2foraCNTfiberwithdiameterof3lm.Thecorrespondingresistivityiscalculatedtobe1.56×10–3Xcm,whichisconsistentwiththefour-probemea-surement.
TheconductivitiesoftheCNTfiberschangedafterdiffer-entpost-synthesistreatments.AsshowninTable1,oxidiz-ingtheCNTfiberinbothairandHNO3ledtoanincreaseinconductivity.TreatingtheCNTfiberunderhightempera-tureinforminggas(Ar+6%H2)ledtoadramaticde-creaseinitsconductivity.Also,annealingtheCNTfiberun-derregrowthconditions(containinghydrogenaswell),dramaticallydecreaseditsconductivityalthoughsomenewCNTswereformedonthefiber(showninFig.4A).Amongthefivetreatments,covalentlycoatinggoldnanoparticlesontothefiberledtothegreatestincreaseinconductivity.AsseenfromFigure4B,althoughsuchcoatingwassparse,
ln (α Τ1 /2)
lnσ
T-1/4
T-1/2
Figure3.FittingoftheconductivitydataofourCNTfiberswithtwodifferentconductionmechanisms.A)Plotofln(rT1/2)versusT–1/4,basedonthevariablerangehopping(VRH)mechanism.B)PlotoflnrversusT–1/2,basedonthetunnelingconduction(TC)mechanism.
资料
COMMUNICATION
Thechangesoftheelectricalproper-tiesofCNTfiberscanberelatedtotheirstructuralmodifications,[34]whichwereelucidatedusingRamanspec-troscopy.Thecontentandtypesofde-fectsintheCNTstreatedusingdiffer-entrouteswereevaluatedbasedonthelocationsoftheDandGpeaks,andtheratioIG/ID.[35]InatypicalRa-manspectrumofCNTs,theDpeakislocatedbetween1330and1360cm–1andisassignedtodisorderedcarbon(defectsandamorphouscarbon),whiletheGpeakisaround1580cm–1andcorrespondstothestretchingmodein
thegrapheneplane.Asshownin
Table1,exceptfortheregrowthroute,
)
m
alltreatmentsledtoanobviousde-ccreaseofIG/ID,suggestingthatCNTs/Sbecomemoredefectiveafterthese( yttreatments.iviInterestingly,annealingCNTfiberstcuinairat480°CdidnotreducetheIDdnpeak,butresultedinanIG/IDratiooCevenlowerthanthatoftheas-spun
fiber.Asamorphouscarbonisreport-edtostartburningat300°C,[18]the
Temperature (K)increaseoftheIDpeakinsteadofa
decreaseafterheattreatmentindicates
Figure4.A)SEMimageoftheCNTfibertreatedunderregrowthconditions,somenewnanotubes
thatthecontributionofthedefectivewerefoundgrowingonthefiber.B)SEMimageoftheCNTfibercoatedwithAunanoparticles.Inset:
sp2carbontotheDpeakisdominantTEMimageshowingthatgoldnanoparticleswereformedsparselyonthenanotubes.C)Compari-sonoftheconductivitytemperaturedependencebetweenthepureCNTfiberandAu-coatedfiber.inthepresentcase.Burningthe
fibersampleinairataround480°C
enabledthedefectivecarbonstobefunctionalizedintocarboxylicgroups
Au-coatedfibershowedthebestconductivityof(COOH),[19,36]
leadingtoahigherDpeakandashiftinits
1150Scm–1
,whichismuchhigherthanthoseofcommercialGpeak.
carbon(285Scm–1)[31]andcarbonfiber(560Scm–1).[27]
ItRefluxingCNTsindiluteHNO3hasbeenreportedtoyieldappearsthatsimpleandmoderatechemicaltreatmentsofetchedcarbonaceousparticlesandtofunctionalizedefectsitestheas-spunCNTfibersresultinremarkableimprovementofCNTsintocarboxylicgroups.[19]Ourexperimentsindicateinelectricalconductivity.thatoxidizingtheCNTsamplein5MHNO3causesmorese-ExceptfortheAu-coatedfiber,alltreatedCNTfibersveredamagetoCNTsthanoxidationinair.Thisalsoshowedshowedaconductivityincreasewithtemperatureovertheen-thelowestIG/IDofthefivetreatments,indicatingthatmore
tiretemperaturerangefrom75Kto300K.Incontrast,asdefectsiteswereformedonnanotubesundertheseconditionsshowninFigure4C,theAu-coatedfiberexhibitedauniquewhereCNTswerefunctionalizedwithC Ogroups.conductivity–temperaturerelationship.Attemperaturesbe-AsshowninFigure4B,dippinganacid-treatedfiberintoa
low250K,theconductivityincreasedwithtemperature,indi-0.01%H4AuCl3solutionspontaneously,butnotdensely,de-catingasemiconductivenature.Attemperatureshigherthanpositsgoldnanoparticlesontothesidewallsofnanotubes250K,theconductivebehaviorchangedtometallic,butthenwithouttheassistanceofanyotherreducingreagent.Thisswitchedbacktosemiconductivewhentemperatureswerekindofreactioncanonlyoccuronfunctionalizednano-above280K.Suchconductivityfluctuationswerealsoob-tubes.[37]TheresultinFigure4Balsoindicatesthatthefunc-servedinDNA-linkedAunanoparticleaggregates[32]andAutionalizationefficiencyin5MHNO3islow,andgoldnanopar-composites,[33]
implyingthatAunanoparticlesplayanimpor-ticleswithanaveragesizearound10nmweresparsely
tantroleintheconductingbehaviorofthefiberathighertem-distributedonthenanotubes.
peraturesbuttheconductanceatlowertemperaturesisdomi-Annealingtheas-spunCNTfiberinhydrogenatmosphere
natedbyCNTs.(Ar+6%H2)atahightemperaturealsoresultedinobvious
资料
COMMUNICATIO
N
damagetothenanotubestructures.AnincreaseoftheDpeakandaredshiftoftheGpeaksuggestthatthepresenceofhy-drogenathightemperaturesmayhelptoreducedefectivesp2bonds(C C)intosaturatedsp3bonds(C–H).[38]TreatingtheCNTfiberunderregrowthconditionsincludingahydrogenat-mosphereleadstotheformationofsomesmallCNTsonthefiber,butwithadropinIG/IDaswell.
ThedependenceofconductivityofCNTfibersontheirstructurescanbeattributedtothevariationincarrierdensityandp-bondingsystemofCNTscausedbydifferentchemicaltreatments.Bothas-spunandtreatedCNTfibersshowacon-ductivityincreaseatlowtemperatures,suggestingthatthecar-rierdensityincreasedwithtemperature.WhenCNTfibersarefunctionalizedwithcarboxylicgroups,wherethep-conjugatedsystemofCNTscanbemaintained,theCNTsaredopedbytheacceptordopantgroups.Asaresult,theconductivityofthefibersisenhancedduetoanincreaseincarrierdensity.[34]Incontrast,thecovalentcoatingofmetallicAunanoparticlesontoCNTsappearstofurtherincreasecarrierdensity,leadingtoanobviousincreaseinconductivity.Conversely,theforma-tionofsp3bondsinCNTsduringannealinginhydrogen-con-tainingatmosphereathightemperaturesmayinterrupttheplanarp-conjugatedstructureofCNTs,causingaseveredis-ruptionoftheelectrontransportinCNTsandthereforeasharpdecreaseoftheconductivity.[38,39]
Insummary,CNTfibersspunfromarraysofmillimeter-longCNTsarecomposedofcleanandwell-alignedCNTs.Theirconductivebehaviorindicatesthattheyaresemicon-ductinginthetemperaturerangefrom75Kto300K.Furthermore,theyshowbetterconductivitythancommercialcarbon,carbonfiber,andpreviouslyreportedCNTfibers.Theconductionoftheas-spunCNTfiberfitstheT–1/4hoppinglawverywell,indicatingthatelectronsconductalongtheCNTfi-berbya3Dhoppingmechanism.Thecarrierdensityseemstoplayanimportantroleintheirconductionbehavior.
TheelectricalpropertiesofCNTfibersarelargelydepen-dentonstructuralchangescausedbydifferentchemicaltreat-ments.IntroductionofacceptordopantsintoCNTconjugatedsystemsbyoxidizingCNTsinairorHNO3helpstoincreasetheconductivityofCNTfibers,whileannealingCNTsinahy-drogen-containingatmospheremaysignificantlylowertheirconductivityduetotheformationofsp3carbonbonds.Cova-lentcoatingofAunanoparticlesontotheCNTsnotonlysig-nificantlyenhancesconductivity,butalsochangesthecon-ductingmechanism.Theseresultsprovideinsightintotheelectrontransportbehaviorinthep-conjugatedCNTsystem,andusefulstrategiestomanipulatetheelectronicpropertiesofCNTsforpotentialapplicationsinelectronics,sensing,andconductingwires.
anddrawingat5cmmin–1.Thediametersofthespunfibersweremeasuredusingscanningelectronmicroscopy(SEM).
Electricalmeasurementswereconductedusingthefour-probemethodattemperaturesfrom75.4Kto300Kwithasamplinginter-valof0.02K.Theconstantdirectcurrentpassingthroughthefiberwassetat10lA.Inordertobuildupagoodcontactbetweenthethinfiberandtheelectrode,aprepatternedglasssubstratewithfourPtelectrodestripswasmadeusingsputteringthroughashadowmask.ThefourPtstripswere300nmthick,1mmwide,5mmlong,andsep-aratedby1mm.Thefibersweretransferredontotheprepatternedsubstrates.AsillustratedinFigureS1,athinlayerofsilverpastecov-eredthefiberateachPtelectrode.
Received:December27,2006
Revised:May25,2007
Publishedonline:September20,2007
Experimental
Arraysofmillimeter-longCNTsweresynthesizedat750°Cwith100sccmethyleneand100sccmforminggasfor15min.TheCNTfi-berswerespunfromCNTarrayswithaspindlerotatingat2500rpm
[1]H.W.Zhu,L.Xu,D.Wu,B.Q.Wei,R.Vajtai,P.M.Ajayan,Science
2002,296,884.
[2]Y.Li,I.A.Kinloch,A.H.Windle,Science2004,304,276.
[3]W.Zhou,J.Vavro,C.Guthy,K.I.Winey,J.E.Fisher,R.E.Smalley,
J.Appl.Phys.2004,95,649.
[4]M.Zhang,K.R.Atkinson,R.H.Baughman,Science2004,306,
1358.
[5]L.Zhu,J.Xu,Y.Xiu,W.H.Hess,C.P.Wong,Carbon2006,44,253.[6]S.N.Mott,ConductioninNon-crystallineMaterials,Clarendon,Ox-ford1987.
[7]R.H.Baughman,A.A.Zakhidov,W.A.deHeer,Science2002,
297,787.
[8]P.L.McEuen,J.Park,MRSBull.2004,29,272.[9]A.P.Ramirez,BellLabsTech.J.2005,10,171.[10]H.J.Dai,Acc.Chem.Res.2002,35,1035.
[11]P.L.McEuen,M.Fuhrer,H.Park,IEEETrans.Nanotechnol.2002,
2,78.
[12]B.Gao,Y.F.Chen,M.S.Fuhrer,D.C.Glattli,A.Bachtold,Phys.
Rev.Lett.2005,95,196802.
[13]A.Bachtold,M.Henny,C.Terrier,C.Strunk,L.Forro,Appl.Phys.
Lett.1998,73,274.
[14]C.Berger,Y.Yi,Z.L.Wang,W.A.deHeer,Appl.Phys.A2002,74,
363.
[15]S.N.Song,X.K.Wang,R.P.Chang,J.B.Ketterson.Phys.Rev.Lett.
1994,72,697.
[16]H.J.Dai,E.W.Wong,C.M.Lieber,Science1996,272,523.
[17]Q.W.Li,X.F.Zhang,R.F.DePaula,L.X.Zheng,Y.H.Zhao,
L.Stan,T.G.Holesinger,P.N.Arendt,D.E.Peterson,Y.T.Zhu,Adv.Mater.2006,18,3160.
[18]R.Sen,S.M.Richard,M.E.Itkis,R.C.Haddon,Chem.Mater.
2003,15,4273.
[19]J.Zhang,H.Zou,Q.Qing,Y.Yang,Q.Li,Z.Liu,J.Phys.Chem.B
2003,107,3712.
[20]S.Niyogi,M.A.Hamon,H.Hu,B.Zhao,P.Bhowmik,R.Sen,M.E.
Itkis,R.C.Haddon,Acc.Chem.Res.2002,35,1105.
[21]S.R.C.Vivekchand,A.Govindaraj,Md.MotinSeikh,C.N.R.
Rao,J.Phys.Chem.B2004,108,6935.
[22]H.C.Choi,M.Shim,S.Bangsaruntip,H.Dai,J.Am.Chem.Soc.
2002,124,9058.
[23]Z.Zhu,Y.Lu,D.Qiao,S.Bai,T.Hu,L.Li,J.Zheng,J.Am.Chem.
Soc.2005,127,15698.
[24]X.B.Zhang,K.L.Jiang,C.Feng,P.Liu,S.S.Fan,Adv.Mater.2006,
8,1505.
[25]K.L.Jiang,Q.Li,S.S.Fan,Nature2002,419,801.
[26]H.Hinra,T.W.Ebbesen,K.Tanigaki,T.Takahashi,Chem.Phys.
Lett.1993,202,509.
[27]D.D.L.Chung,CarbonFiberComposites,Butterworth–Heine-mann,Newton,MA1994,Ch.2.
–
资料
COMMUNICATION
[28]H.R.Zeller,Phys.Rev.Lett.1972,28,1452.[29]M.F.Matare,J.Appl.Phys.1984,56,2605.
[30]C.H.Jin,J.Y.Wang,Q.Chen,L.M.Peng,J.Phys.Chem.B2006,
110,5423.
[31]J.D.Cutnell,K.W.Johnson,Physics,7thed.,Wiley,NewYork2006,
Ch.20.
[32]Y.J.Yun,G.Park,S.Jung,D.H.Ha,Appl.Phys.Lett.2006,88,
063902.
[33]A.A.Babaev,I.K.Kamilov,S.B.Sultanov,A.M.Askhabov,P.P.
Khokhlachec,J.Optoelectron.Adv.Mater.2005,7,2013.
[34]A.Skakalova,A.B.Kaiser,U.Dettlaff-Weglikowska,S.Roth,
J.Phys.Chem.B2005,109,7174.
[35]A.Jorio,M.A.Pimenta1,A.G.SouzaFilho,R.Saito,G.Dressel-haus,M.S.Dresselhaus,NewJ.Phys.2003,5,139.
[36]Q.Li,J.Zhang,Z.F.Liu,J.Phys.Chem.B2002,106,11085.[37]X.Xu,T.Wang,X.Qu,S.Dong,J.Phys.Chem.B2006,110,853.[38]G.Zhang,P.Qi,X.Wang,Y.Lu,D.Mann,H.Dai,J.Am.Chem.
Soc.2006,128,6026.
[39]H.Park,J.Zhao,J.P.Lu,NanoLett.2006,6,916.
______________________