手机版

初一列方程解应用题练习及答案

发布时间:2024-10-11   来源:未知    
字号:

列方程解应用题练习及答案

一、填空题(每小题3分,共18分)

1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑8米,乙每秒钟跑6米.

(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;

(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.

2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.

3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.

4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.

5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.

6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.

二、选择题(每小题3分,共24分)

7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是

A.20 B.33 C.45 D.54

8.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么

A.甲比乙更优惠 B.乙比甲更优惠

C.甲与乙同等优惠 D.哪家更优惠要看原价

9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为

A.(x+y)千米/小时 B.(x-y)千米/小时

C.(x+2y)千米/小时 D.(2x+y)千米/小时

10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是

A.a米 B.(a+60)米 C.60a米 D. 米

11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为

A.1-( + )m B.5- m

C. m D.以上都不对

12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为

A.x-1=5(1.5x) B.3x+1=50(1.5x)

C.3x-1= (1.5x) D.180x+1=150(1.5x)

13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为

A.a元 B.1.08a元 C.0.972a元 D.0.96a元

14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为 全月应纳税金额 税率(%)

不超过500元 5

超过500元到2000元 10

超过2000元至5000元 15

…… ……

A.1900元 B.1200元 C.1600元 D.1050元

三、简答题(共58分)

15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.

(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.

(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.

(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).

(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.

16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?

17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.

18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.

19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.

20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.

参考答案

一、1.(1)25 (2)200 2.960 3.8π 4.80%x=5+3 10 5.36 6.66

二、7.A 8.B 9.C 10.B 11.B 12.D 13.C 14.C

三、15.(1)10 100 0 (2)8 96 4 (3)15 75 10 (4)6.4 128.6 (5)大 圆 四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=5

17.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.

18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:

100+ (x-100)=200+ [x-200-100- (x-100)],也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的 ”也是最后一个班级的树苗数的 ,由最后两班的树苗相等,可得方程:

100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得 =100,还可以设每班级取树苗x棵,得 =100.

19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6 (36-x)=100-27.60, 解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.

初一列方程解应用题练习及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)