考研数学概率论与数理统计初步题型总结
(新浪网 海天教育)
目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;
(11)求随机变量函数的分布(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。
这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。
在解答这部分考题时,考生易犯的错误有:
(1)概念不清,弄不清事件之间的关系和事件的结构;
(2)对试验分析错误,概率模型搞错;
(3)计算概率的公式运用不当;
(4)不能熟练地运用独立性去证明和计算;
(5)不能熟练掌握和运用常用的概率分布及其数字特征;
(6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。 更多信息请访问:新浪考研频道考研论坛
特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
怎样学“概率论与数理统计”
“概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[其中数学一占20%?,数学三占25%?,数学四占25%?(概率论)].由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的.?
首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多, 中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟
练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.?
而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.?
根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议.?
一、 学习“概率论”要注意以下几个要点
1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为
1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画. 此外若对一切实数集合B,知道P(X∈B). 那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B). 就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.?
2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,
随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互
独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂.?
3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如
F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握.?
4.至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,.这样往往能“事半功倍”.
二、 学习“数理统计”要注意以下几个要点?
1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决那些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例
如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足.掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误.?
2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住.事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背.
概率论和数理统计》是学习统计类和经济类专业课程的基础,如多元统计分析、抽样统计、随机过程、时间序列分析、计量经济学、经济预测与决策、金融投资学,保险学原理,风险管理,精算学等等。
概率统计》是高等院校理工类、经管类的重要课程之一。在考研数学中的比重大约占22%左右。主要内容包括:概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析、马尔科夫链等内容
概率统计理论与方法的应用几乎遍及所有科学技术领域、工农业生产和国民经济的各个部门中.
例如:1.气象、水文、地震预报、人口控制及预测都与概率论紧密相关;
2.产品的抽样验收,新研制的药品能否在临床中应用,均需要用到 假设检验;
3.寻求最佳生产方案要进行实验设计和数据处理;
4.电子系统的设计, 火箭卫星的研制与发射都离不开可靠性估计;
5.处理通信问题, 需要研究信息论
6.探讨太阳黑子的变化规律时,时间序列分析方法非常有用;
7.研究化学反应的时变率,要以马尔可夫过程来描述;
8.在生物学中研究群体的增长问题时提出了生灭型随机模型,传染病流行问题要用到多变量非线性生灭过程;
9.许多服务系统,如电话通信、船舶装卸、机器维修、病人候诊、存货控制、可用一类概率模型来描述,其涉及到的知识就是排队论.
目前,概率统计理论进入其他自然科学领域的趋势还在不断发展.在社会科学领域 ,特别是经济学中研究最优决策和经济的稳定增长等问题,都大量采用 概率统计方法.法国数学家拉普拉斯(Laplace)说对了:“生活中最重要的问题 , 其中绝大多数在实质上只是概率的问题.”英国的逻辑学家和经济学家杰文斯曾对概率论大加赞美:“概率论是生活真正的领路人,如果没有对概率的某种估计, 那么我们就寸步难行,无所作为.
概率论
研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向
于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。
随着研究随机现象规律性的科学—概率论的发展,应用概率论的结果更深入地分析研究统计资料,通过对某些现象的频率的观察来发现该现象的内在规律性,并作出一定精确程度的判断和预测;将这些研究的某些结果加以归纳整理,逐步形成一定的数学概型,这些组成了数理统计的内容。
数理统计
数理统计在自然科学、工程技术、管理科学及人文社会科学中得到越来越广泛和深刻的应用,其研究的内容也随着科学技术和经济与社会的不断发展而逐步扩大,但概括地说可以分为两大类:⑴试验的设计和研究,即研究如何更合理更有效地获得观察资料的方法;⑵统计推断,即研究如何利用一定的资料对所关心的问题作出尽可能精确可靠的结论,当然这两部分内容有着密切的联系,在实际应用中更应前后兼顾。但按本专业的总体设计,我们的数理统计课程只讨论统计推断。数理统计以概率论为基础,根据试验或观察得到的数据,来研究随机现象统计规律性的学科。本课程的目的是让学生了解统计推断检验等方法并能够应用这些方法对研究对象的客观规律性作出种种合理的估计和判断。掌握总体参数的点估计和区间估计。掌握假设检验的基本方法与技巧。理解平方差分析及回归分析的原理,并能运用其方法和技巧进行统计推断。
数理统计是概率论在实际生活中的应用!