Monte Carlo study of fluence perturbation effects on cavity
HomeSearchCollectionsJournalsAboutContact usMy IOPscience
Monte Carlo study of fluence perturbation effects on cavity dose response in clinical protonbeams
This article has been downloaded from IOPscience. Please scroll down to see the full text article.1998 Phys. Med. Biol. 43 65
(http:///0031-9155/43/1/005)
View the table of contents for this issue, or go to the journal homepage for more
Download details:
IP Address: 202.120.79.103
The article was downloaded on 10/01/2011 at 07:50
Please note that terms and conditions apply.
Monte Carlo study of fluence perturbation effects on cavity
Phys.Med.Biol.43(1998)65–89.PrintedintheUKPII:S0031-9155(98)86156-3
MonteCarlostudyof uenceperturbationeffectsoncavitydoseresponseinclinicalprotonbeams
HugoPalmansandFrankVerhaegen
DepartmentofBiomedicalPhysics,UniversityofGent,Proeftuinstraat86,B-9000Gent,Belgium
Received21July1997,in nalform4September1997
Abstract.Currentprotocolsforclinicalprotonbeamdosimetryhavenotimplementedanychamber-dependentcorrectionfactorsforabsorbeddosedetermination.ThepresentworkinitiatesaMonteCarlostudyofthesefactorswithemphasisonproton uenceperturbationeffectsandpreliminarycalculationsofperturbationeffectsfromsecondaryelectrons.
TheprotonMonteCarlocodePTRANwasmodi edtoallowsimulationofprotontransportinnon-homogeneousgeometriesofbothunmodulatedandmodulatedbeams.Thedosetowaterderivedfromthedosecalculatedinanaircavityagreeswellwithresultsfromanalyticalcalculationsassumingadisplacementofthepointofmeasurement.Forunmodulatedbeamssmalldifferences,limitedto0.8%,couldbepartiallyattributedtoprotonmultiplescattering.Effectsofreplacingwateraroundthecavitywithwallmaterialareexplainedbytheintroductionofawater-equivalentwallthickness.Formodulatedbeamsnosigni cantperturbationeffectsarise.Secondaryelectronspectraarecalculatedanalytically.PreliminaryelectrontransportcalculationswithEGS4showthatwallperturbationsoftheorderof1%couldresult.
Perturbationeffectscausedbytheenergytransportofsecondaryparticlesfrominelasticnuclearinteractionshavenotbeenstudiedhere.Inclusionofinelasticnuclearenergytransfersinthecavitydose,assumingtotallocalabsorption,indicatethatseparatescalingofthiscontributionwiththeratiooftotalinelasticnuclearcrosssectionscouldbeimportant.
1.Introduction
CurrentdosimetryprotocolssuchastheAAPMTG16protocol(AAPM1986)andtheECHEDprotocol(Vynckieretal1991,1994)fordosetowaterdeterminationwithionizationchambersinclinicalprotonbeamswithanenergyrangeof50–250MeVhavenotincludedanychamber-dependentcorrectionfactors.
Medinetal(1995)proposedanexpressionfortheabsorbeddosetowaterDw,QatthereferencepointinaprotonbeamcorrespondingtotheNDformalismoftheIAEACodeofPracticeforphotonandelectronbeamdosimetry(IAEA1987)inwhichaperturbationcorrectionfactorpQisde ned:
Dw,Q=MQND,Q0
(Wair)Q
(sw,air)QpQ
(Wair)Q0
(1)
inwhichQandQ0denotetheprotonbeamqualityandthecalibrationbeamqualityrespectively,MQistheionizationchamberreading,correctedforatmosphericnon-standardconditions,forrecombinationandforpolarityeffects,ND,Q0istheabsorbeddosetoaircalibrationfactorfortheionizationchamber,(Wair)Q/(Wair)Q0istheratioofthemeanenergyrequiredtoproduceanionpairinthetwobeamqualitiesand(sw,air)Qisthewater
c1998IOPPublishingLtd0031-9155/98/010065+25$19.50
65
Monte Carlo study of fluence perturbation effects on cavity
66HPalmansandFVerhaegen
toairmassstoppingpowerratiointheprotonbeam.Inprinciple,restrictedstoppingpowersshouldbeusedtoaccountforthedistinctionbetweenenergylossestosecondaryelectronsthatareabletotransferenergyawayfromthegenerationpointandthosethatarenot,asforphotonbeams(SpencerandAttix1955).Thisraisesthequestionofthecut-offenergyandofthedealingwithtrack-endswhichwewillnotdiscusshereasitisoutofthescopeofthepresentwork.ThetotalperturbationcorrectionfactorpQconsistsoftheproductoffactorsforthenon-waterequivalenceofthewall(pwall),forthecentralelectrodeeffect(pcel gbl),fortheperturbationofelectron uenceduetoinsertionoftheaircavityinwater(pcav)andoptionally,ifthegeometricalcentreofthechamberisusedasreferencepoint,forthedisplacementeffect(pdispl).Wecanremarkthatthede nitionofpcavcouldbegeneralizedto uenceperturbationofallsecondarychargedparticles.
Regardingthe(Wair)pvalueforprotonsthereisstillarelativelylargeuncertaintyduetothedif cultyofdeterminingthisfactor.RecentcomparisonsofionizationchamberdosimetryandwatercalorimetrybySiebersetal(1995)andPalmansetal(1996)indicatethatthevalueadoptedbytheAAPMprotocol(AAPM1986)isclosertorealitythanthevaluerecommendedbytheECHEDprotocol(Vynckieretal1991,1994).However,onlytheproductof(Wair)pand(sw,air)pcanbedeterminedaccuratelybyuseofwatercalorimetry.
Regarding(sw,air)pforclinicalprotonbeams,importantworkhasbeendonebyMedinandAndreo(1992,1997a).Theyshowedthatthecontributionsfromsecondaryprotonstosw,airarelessthan0.1%,whereasthecontributionfromsecondaryelectronscouldchangethewatertoairstoppingpowerratiobyupto0.6%forprotonsintheclinicalenergyrange.
ItisgenerallyassumedthattheperturbationcorrectionfactorpQisveryclosetounityorthat,atleast,itsdeviationfromunityiswellwithinthetotaluncertaintyofthe naldose.Regardingprimaryproton uenceperturbations,thiscanbearguedtobeduetothelowscatteringcharacteristicsofprotons.Perturbationeffectscausedbyanincompletesecondaryelectronequilibriumarealsocommonlyneglected.Themaximumenergyofsecondaryelectronsisthreeordersofmagnitudesmallerthantheprotonenergysotherangeinwaterofmostsecondaryelectronsisverysmallanditisassumedthatonlysmalleffectsaretobeexpected.Furthermore,perturbationeffectscausedbysecondaryparticlesoriginatingfrominelasticnuclearinteractionsarealsoneglected.Forthemajorityofthechargedsecondaryparticlesthestoppingpowersaremuchhigherthanforprimaryprotonsresultinginveryshortranges.Onlyneutronsandsecondaryprotonshaverangeslargeenoughtotransportasigni cantpartoftheenergyawayfromthegenerationpoint.Thetransportofsecondaryprotonshasasigni cantin uenceonthedepthdosedistributionasshownbyMedinandAndreo(1997a).ThoughrecentexperimentalinvestigationsbyMedinetal(1995)andPalmansetal(1996)showthatthereiseveryreasontotakeintoaccountchamber-dependentperturbationcorrectionfactors,thepotentialperturbationeffectsshouldbesmallbecauseionizationchamberdosimetryinclinicalprotonbeamscanbeconsistentlyperformedwithin1%to2%usingdifferentchambertypeswithouttakingintoaccountperturbationcorrectionfactors.
Somecalculationshavealreadybeendoneonthestudyofchamber-dependentperturbationeffectsandtheimportanceofconsideringthein uenceofsecondaryelectronsonperturbationcorrectionfactorsandstoppingpowerratios.Bichsel(1995)studiedthein uenceofcavityshapeandcavitymaterialontheshapeoftherecordeddepthdosedistributions,especiallyaroundtheBraggpeak.Thein uenceofsecondaryelectronshasbeenstudiedbeforebyLaulainenandBichsel(1972).Theycalculatedthatfor50MeVprotonstraversinga1mgcm 2thickfoil,about10%oftheenergylostbytheprotonsescapesfromthefoilbysecondaryelectronsandthatforaplanedetectortheenergytransferredbysecondaryelectronsfromthefrontcavitywalltothecavitymediumandfrom
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams67
thecavitytothebackwallisnotinequilibrium.MedinandAndreo(1992)alsocommentedontheeffectofsecondaryelectrons,andremarkedthattheassumptionofsecondaryelectronenergydepositionatthesiteoftheirproductionmightcauseinaccuraciesintheabsorbeddosedeterminationsincetherangeofthemostenergeticsecondaryelectronsinairisofthesameorderofmagnitudeasthedimensionsofanionizationchamber.
Inthepresentworkwehavestudiedsomeaspectsoftheperturbationcorrectionfactorsdiscussedinthepreviousparagraphsbothinunmodulatedandmodulatedprotonbeams,fordifferentcavityshapesanddimensions,wallmaterials,wallthicknessandprotonenergies.Forthispurpose,theprotonMonteCarlotransportcodePTRAN(Berger1993a)isused.Inpreviousworkthetransportofprotonsinmaterialsotherthanwaterwasimplementedinthiscode(PalmansandVerhaegen1997).Thisallowssimulationofmodulatedprotonbeams.InthepresentworktheimplementationofcylindricalandsphericalgeometriesinPTRANisrealized.Theeffectofinsertinganaircavityinhomogeneouswaterontheprimaryproton uenceisinvestigatedandassociatedwithareplacementcorrectionfactorpdisploradisplacementofthepointofmeasurement.Asemi-analyticalmodelforthecalculationofthiseffectivemeasuringpointisproposedandcomparedwiththeMonteCarloresults.Theeffectofreplacingwateraroundtheaircavitywithwallmaterialwhichgivesrisetoacontributiontothewallcorrectionfactorpwallisalsocalculated.
Apreliminarystudyofthecontributionofsecondaryelectron uenceperturbationstopcavandpwallhasbeenstartedusingEGS4electrontransportcalculations.Thebalancebetweenenergydepositedinthewallwhichistransferredtothecavitybysecondaryelectronsandviceversaisevaluatedusingelectronspectrathatareanalyticallyderivedfromtheprotonspectra.
Fluenceperturbationeffectsbysecondaryheavychargedparticlesoriginatingfrominelasticnuclearinteractionsarenotevaluatedhere.Themainreasonisthatexceptwhenoxygenisthetargetparticle(Seltzer1993),thecrosssectionsofformationfortheseparticlesarenotknown.However,itisnotunlikelythattheseparticlescouldhaveimportanteffectsoncavitydoses,especiallyatthehigherenergies.MedinandAndreo(1997a)showedthatfora200MeVbeamanimportantfractionofthesechargedsecondariesistransportedoveraconsiderablerange,therebyin uencingthedepthdosedistributionsigni cantly.Furtherinvestigationofthiseffectiswarranted.
Withthisstudywedonotintendtocalculateperturbationcorrectionfactorsforrealionizationchambersbutweintendtoindicatehowwaterabsorbeddoseshouldbeevaluatedfromionizationchambermeasurementsinprotonbeamswithrespecttopotentiallyexistingperturbationeffects.2.Materialsandmethods2.1.TheprotonMonteCarlocode
ThetransportcodeusedinthisworkisbasedontheprotonMonteCarlocodePTRAN(Berger1993a).Thiscodesimulatesmonodirectionalmonoenergeticpencilprotonbeamsinhomogeneouswaterwithouttransportofsecondaryparticles(electronsandsecondariesfrominelasticnuclearinteractions).ItcalculatesprotontransportusingaclassI schemefollowingBerger’sclassi cationofMonteCarloparticletransportschemes(Berger1963).Theparticlestepsaredeterminedinaprecalculatedstep-sizegridwhichislogarithmicinthelowerenergyrangewherethestoppingpowerincreasesmorerapidlywithenergydegradationthaninthehigherenergyrange.Thecodecalculatesdepthdosedistribution,radialdistributionsandenergy uencespectrainslabsde nedinahomogeneouswater
Monte Carlo study of fluence perturbation effects on cavity
68HPalmansandFVerhaegen
geometryformonoenergeticpencilbeams(Berger1993a).Inpreviousworkwedescribedmodi cationsandextensionsoftheoriginalcodeinordertocalculatedepthdosepropertiesforlow-Zmaterialsotherthanwater(PalmansandVerhaegen1997).Thehomogeneousslabgeometryoftheoriginalcodewasmodi edtoallowdifferentslabmaterialstobeusedinonesimulation.
2.2.Implementationofmodulatorwheels
Forthepresentwork,additionalchangesaremadetoallowsimulationofmodulatedprotonbeams.Inclinicalpracticethemodulationofprotonbeamsisachievedusingamodulatorwheelwithavaryingthicknessthatisrotatedbetweentheincidentprotonbeamandthepatientorwaterphantomtoobtaina atdosepro leindepthbyspreadingouttheBraggpeak.ThemodulatorwheelisimplementedintheprotonMonteCarlotransportcodeasanadditionallayerofmodulatorwheelmaterialinfrontofthewaterphantom.Foreveryincidentprotonthethicknessofthislayerissampledfromthedistributionofthicknessesthatoccurinthewheel.2.3.Implementationofcavities
Thecalculationofdosedepositedincavitiesrequiredsigni cantchangestotheoriginalcodeanditsconcepts.Onehastodealwithseveraldif cultiestypicalofthiskindofproblemandcomparabletothoseencounteredinelectrontransportcalculations,suchasthecrossingofboundariesbetweendifferentmedia,thescoringofenergydepositedalongaparticletrack,calculationof uencespectraetc.Thefollowingparagraphsdealwiththesolutiontotheseproblems.Thesimulatedgeometriesarelimitedtoconcentricsphericalorcoaxialcylindricalcavities.Furthermoretheincidentbeamgeometryisextendedtobroadbeams(square,rectangularorcircularlateraldistribution)aswellasbeamswithacertainenergydistribution.
Thecrossingofboundariesbetweendifferentmediaisdealtwithasfollows.RoutinesareaddedtoPTRANthatcalculatetheintersectionofthestraightlineconnectingthestartandendpointofthesampledparticlestepandtheboundary.Themodularprogrammingoftheseroutinesallowsessentiallyanyboundaryshape.Thestraightlineiscalculatedusingitsparameterrepresentation.Theintersectionpointofthestraightlinewithaboundaryisdeterminedtocheckwhethertheparticletraversestheboundarywithinthesampledstep.Ifaboundarycrossingbetweendifferentmediaoccurs,thestepoftheprotoniscutattheboundary.Fortheenergyevaluationtheenergydecreasealongthestepisassumedtobelinear.Anewstepandscatteranglearethensampledforthenewmedium.Withthissimpli edapproachanumberoferrorsareintroduced.First,theactualcrossingpointisnotnecessarilyonthestraightline.Duetothesmalllateraldisplacementsthatprotonsundergo,wecanassumethatthiscausesnegligibleerrorsmainlybecauseofthesmallscatteringangles.Weveri edthattheaveragelateraldisplacementperstepintheMonteCarloprotontransportvariesfromabout0.1%ofthesteplengthat200MeVtoabout1%atenergiesbelow1MeV.Thesteplengthsat200MeVand1MeVareabout10 3gcm 2and10 6gcm 2respectively.Secondly,themultiplescatteringangleisnotcorrectedafterthecut-offofastep.IfwewouldreassesstheMoli`eredistributionfortheshorterstep,itcouldbeincorrectforveryshortstepsasshownbyAndreoetal(1993).Again,weassumethattheintroducederrorsarenegligibleforthesamereasonsasinthe rstpoint.Furthermore,theenergyisactuallynotdepositedequallyalongeachprotontracksegmentand,inconsequence,theassumptionoflinearenergydecreasealongthestepisonlyan
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams69
approximation.Astheenergylossespersteparesmall,bychoosingalogarithmicstepsizegridinPTRANforthelowerenergieswherethestoppingpowersshowthelargestvariationswithenergy,theintroducederrorsareminimized.
Speci callyforthecylindricalandsphericalcavitiesinthesimulationsofthisworkthefollowingmethodsareusedtosavecomputingtime.A‘geometryinterrogationreduction’methodisusedtoavoidunnecessarytesting.Thereforeaslabregionperpendiculartotheincidentbeamisde nedinwhichcavitiesarepresent.Whenaparticleentersthisregionatestisactivatedtoevaluateiftheparticlecrossesacavityborder.ThetransportinallotherslabregionsremainsessentiallythesameasintheoriginalPTRANcode.Forthesimulationofwallperturbationeffects,atwo-cavitygeometryissimulated.Theinnercavityissettoair,theregionbetweeninnerandoutercavityissettowallmaterialorwater.A‘correlated-sampling’technique(see,forexample,MaandNahum1994)wasusedtosimulatedifferentwallmaterials.Thismeansthatwhenaparticleenterstheoutercavity,theenergy,thespatialcoordinatesanddirectionalcoordinatesoftheprotonarestoredaswellastherandomnumberofthesimulationatthatpoint.Afterthetransportofthisprotonis nished,thetransportsimulationisrestartedwiththestoredconditionsbutwiththewallsettoanothermaterial.Thisapproachnotonlysavescomputingtimebutalsoimprovesthestatisticalcorrelationofthedosesinthecavitywithandwithoutwalls.
TheenergydepositedinthecavityisevaluatedasthesumoftheenergiesaprotonloseswhilepassingthroughthecavitybyCoulombinteractions(includingelasticnuclearscattering)andbytheenergytransfertosecondaryparticlesbyinelasticnuclearinteractions.Inanycasetheenergyaprotonlosesisassumedtobelocallyabsorbed.Whenappropriate,adiscussionisincludedwherethisassumptionmightin uencetheresults.Inaddition,apreliminarystudyofpossibleeffectsofsecondaryelectronswitharangelargeenoughtotransportenergyfromoneregiontoanotherisperformed.Theseeffectsareevaluatedseparatelyasexplainedinsection2.6.Anexplanationoftheobservedeffects,includingthepotentialrelationtoparticularperturbationcorrectionfactorsisdiscussedinsection3.Protonspectrainthedifferentcavitiesarecalculatedtoenablethesubsequentcalculationofsecondaryelectronspectra.Thisisdonebyscoringthetracklengththattheprotontraversesinthecavityandbydistributingthistracklengthovertheenergyandangularbinsofthespectrum.Uptonowonlycylinders(optionallywithtopandbottomplane)andspheresareimplemented.
2.4.Simulatedgeometryandcases
Forthecalculationofcavity-dependenteffectsondosedeterminationthegeometryof gure1isused.The(air- lled)cavityvolume,thewallthicknessandthewallmaterialarevariedforcylindricalandsphericalcavities.Theradiiofthecavitiesweretakenas0.25and0.50cmandtheheightofthecylindricalaircavitywastakenas1.0cm.Wallmaterialsusedarewater,graphite,PMMA(Lucite,Perspex),polystyreneandtissue-equivalentA150.Toevaluatetheeffectofprotonmultiplescatteringseparately,calculationsarealsodonewithscatteringturnedoff.Thecalculationsareperformedformonoenergeticprotonswithenergiesof70,100and200MeVfortheunmodulatedbeamsandwithenergiesof85,100and200MeVforthemodulatedbeams.Fortheunmodulatedbeamsthecavitycentreswereplacedatashallowdepth(1.0cmforthe70MeVand100MeVbeams,2.0cmforthe200MeVbeam)andatdepthscorrespondingtoabouthalfthecontinuous-slowing-downrangeRcsda(2.0cm,3.4cmand13.0cmrespectively).ForthemodulatedbeamspolystyrenemodulatorwheelswereusedresultinginaspreadoutBraggpeak(SOBP)fromabout0.3 Rcsdato1.0 Rcsda.Thecavitieswereplacedinthecentreofthe atdoseregion
Monte Carlo study of fluence perturbation effects on cavity
70HPalmansandFVerhaegen
(3.4cmfor85MeV,4.5cmfor100MeVand15.1cmfor200MeVbeam).Thethicknessofthecavitywallvariedfrom0.025cmto0.8cm.Forthecasewherethecavitywastooclosetotheentranceplaneofthephantomtoallowforthe0.8cmwallthickness,0.4cmwasusedasthemaximumvalue.Thesewallthicknessesaremuchlargerthanthoseoccurringinionizationchambersforclinicalprotondosimetry,buttheiruseallowsamoreaccurateinvestigationofperturbationeffectsandmakestheinterpolationtorealisticwallthicknesseseasier.Formosteffectsonlysomeoftheabovedescribedsituationsaresimulatedextensively(forexample,onlyforcylindricalcavities)assimilareffectsariseforother
situations.
Figure1.Geometrysimulatedtostudypotentialperturbationeffectsincavitydoseresponse.Thetwoconcentricalsphericalorco-axialcylindricalcavitiesaresurroundedbyhomogeneouswater.Theinnercavitycontainsair,theregionbetweenthetwocavitiesconsistsofwallmaterial.Twodottedlinesde nethewaterlayercontainingthecavityinwhichtheboundarycrossingtestisswitchedon.Forthesimulationofmodulatedbeamsanadditionallayerwithvariablethickness(sampledfromthewheelthicknessdistribution)thesimulatedwaterphantomisaddedupstream.Thebeamissuf cientlylaterallyextendedtoavoidparticlesfromthebeamedgereachingthecavities.
2.5.Primaryproton uenceperturbationwithasemi-analyticalmethod
Thesimulationsarecomparedwithasemi-analyticalmethod.Inthis,theeffectivewaterdepthofthecavityisapproximatedanalyticallyassumingthatnoscatteringoccurs(seeappendix).Foracylindricalcavityitiscalculatedas:
x=+R1
2(1 F)I8FR122
withI= (R2 x2)(R1 x2)dx(2)zeff=d
πR13πx= R1
forasphericalcavity:
r=+R1
3(1 F)I3FR122
(R2 r2)(R1 r2)rdr(3)withI=zeff=d 4R1r=0wheredisthedepthofthecentreofthecavity,R1istheradiusofthecavity,R2isthe
outerradiusofthewallandF=Rcsda,water/Rcsda,wallfortheincidentprotonenergy.Foratheoreticalaircavitywithoutwallsinwaterthepreviousexpressionsbecome
8R1
zeff=d (4)
3π
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams
forcylindricalcavitiesand
71
3R1
(5)
4
forsphericalcavitiesandzeffbecomesananalyticalestimateforthedepthoftheeffectivepointofmeasurement.
BothatthedepthofthecavitycentreandattheeffectivewaterdepthzeffthedoseisevaluatedfromthedepthdosedistributioncalculatedwithPTRANinhomogeneouswaterwhichexplainswhythemethodistermedsemi-analytical.Thedosethusobtainediscomparedwiththedosecalculatedintheaircavity,scaledwiththewatertoairstoppingpowerratioand,ifnecessary,forapartwiththeratiooftotalinelasticnuclearcrosssections(seesection3.2.1).
zeff=d
2.6.Effectofsecondaryelectronperturbation
2.6.1.Generationofsecondaryelectrons.ThecalculationofsecondaryelectronspectrausedinthisworkisdonewiththeclassicalRutherfordcrosssectionforcollisionbetweenanincidentprotonwithafreeelectron.AmoreaccurateapproachusingtheBahbacrosssectionresultsincrosssectionswhichareonlyslightlydifferentfromtheRutherfordcrosssectionsasindicatedbyMedinandAndreo(1997b).Weassumethatthemoresimpli edapproachinourworkdoesnotin uencetheresultsqualitatively.
TheclassicalRutherfordcrosssectiondifferentialinenergyisgivenby(see,forexample,Ruddetal1992):
24πr0Rdσ=(6)dWTW2
whereWisthesecondaryelectronenergy,σthecrosssectionperelectronandperincidentproton,r0theBohrradius,RtheRydbergenergyandTthekineticenergyofanelectronthatwouldhavethesamevelocityastheincidentproton(T=m/MT0,withmtheelectronmass,MtheprotonmassandT0theprimaryprotonenergy).IntheRutherfordapproximationacertainsecondary-particleenergycorrespondswithexactlyonescatterangleθ relativetotheincidentparticleaxis,whichcanbeevaluatedbyclassicalmechanics:
1MW
.(7)cosθ =
2mT0
Themaximalsecondaryelectronenergycorrespondstothesmallestanglesandisgivenby
m
Wmax=4T0.(8)
M
ThenumberofelectronsNthatiscreatedperunitofproton uence(cm 2)inavolumedVisthen
Z
(9)N=NAρσdV
A
whereNAisAvogadro’snumber,ρthemassdensityofthemediumandZ/Atheaverageratioofatomicnumberandatomicmassofthemedium.
Foreachbinoftheprotonspectrumthesecondaryelectronspectrumiscalculatedaccordingtoequation(6)usingenergybinsof1keVandalowercut-offenergyof10keV.Thecorrespondingelectronemissionanglesθ relativetotheprotondirection(thez -axisof gure2)arecalculatedusingequation(7).Thenumberofsecondaryelectronsineachbinisuniformlydistributedafterwardsovertheazimuthalangle between0and2πaround
Monte Carlo study of fluence perturbation effects on cavity
72HPalmansandF
Verhaegen
Figure2.Geometricalsituationofthegenerationofsecondaryelectrons,indicatingtheabsoluteandrelativeangulardirectionoftheincidentprotonandsecondary
electron.
Figure3.FiveregionsinwhichtheprotonspectraarecalculatedduringtheMonteCarlosimulation.IneachoftheseregionsthesecondaryelectronspectraarederivedanalyticallyandtransportedwithEGS4tocalculatetheenergytranfersbyelectronsfromoneregiontoanother.
theprotondirection.Theelectronemissionanglewithrespecttothecentralaxisoftheprimarybeam(thez-axisof gure2)iscalculatedusingequation(10):
cosθ=cosθ cosθ0 sinθ sinθ0cos
whereθ0representstheangleoftheproton’s ightdirectionrelativetothez-axis.2.6.2.Transportofsecondaryelectrons.Thetwo-dimensionalelectronspectracalculatedfromtheprimaryprotonspectrawereusedasinputforelectrontransportsimulationswiththeMonteCarlocodeEGS4(Nelsonetal1985).Separateinputspectrawereusedforelectronsthatwerecreatedbyprotonsindifferentregions.Fiveregionswerede ned:
(10)
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams73
theaircavity,thewallandthewatershellaroundthewallofwhichthewallandwatershellweresubdividedinafront(upstream)andback(downstream)sectorasshownin gure3.Electronsweretransporteddowntoanenergycut-offECUTof1keV.CrosssectionsforelectroninteractionswereaccordinglygeneratedintheEGSpreprocessorstage(AE=1keV).TheelectronstepsizealgorithmPRESTA(BielajewandRogers1987)wasinvokedtoimproveelectrontransportacrossmediumboundaries.TheEGS4algorithmfortransportoflow-energyelectrons,developedbyMaandNahum(1992)wasused.Rogers(1993)pointedoutthatPRESTAshouldbeusedincombinationwithanESTEPEvalueaslowas1%toachievereliableresultsfromMonteCarlosimulationsofionizationchamberresponse.InthisworksimulationsweredonewithESTEPEvaluesof1%and50%.InthelattercasePRESTAtakesfullcontrolovertheelectrontransport.Separaterunswereperformedforthedifferentwallmaterials(A150,graphite,PMMA,polystyrene,water)forsphericalcavities.Foreachrun,theenergydepositionbytheelectronswasscoredin15contributions:fortheelectronsgeneratedinthe veregionspreviouslyde ned,theenergydepositioninthethreeregionstakenbytheaircavity,wallandwatershellarescored.Toobtainasmallstatisticalvariance,inatypicalrun20to25timesmoreelectronsweregeneratedinthewallandwatershellthaninthecavity.Thisvariancewasestimatedbysplittingupacalculationinto10batches.TheobtainedelectronenergydepositionswerethenusedtocorrecttheenergydepositionofprotonscalculatedbyPTRANinthefollowingway:
2
(Ewall,i→cavNwall,i+Ewater,i→cavNwater,i)Ecorr=Eproton+
i=1
Ecav→wallNcav Ecav→waterNcav
(11)
whereEcorristhemeanenergydepositioninthecavitycorrectedforsecondaryelectron
uenceperturbation,Eprotonthemeanenergydepositionduetoprimaryprotonsperincidentprotonassumingnosecondaryelectronperturbation,Ea→bthemeanenergyperelectrongeneratedinregionathatisdepositedinregionb,Nathenumberofelectronsgeneratedinregionaperincidentprotonandianindexoverthenumberofsectors(frontandbackofbothwallandwatershell).Aperturbationcorrectionfactorduetoelectroneffectspeisthencalculatedaspe=Ecorr/Eproton.3.Resultsanddiscussion
3.1.Simulationofmodulatedprotonbeams
Figures4(a)and4(b)showcalculateddepthdosedistributionsformodulatedprotonbeamsofdifferentincidentenergiesE0withoutandwithtakingintoaccountinelasticnuclearinteractions.Forbothdatasetstheenergydistributionofprotonsafterpenetratingthemodulatorwasbasedonthedesignofpolystyrenemodulatingwheelswith80sectorsofvaryingthickness.Thethicknessdistributionwasdeterminedinsuchawaythattheresultingmodulatedprotonbeamproducesa atdepthdosedistributioninwateriftherecentstoppingpowerdataforwaterpublishedbytheICRU(1993)areusedandinelasticnuclearinteractionsareneglected(forananalyticalmethodtocalculatethethicknessdistributionofmodulatorwheels,seethepublicationofBortfeldandSchlegel(1996)).
Asisobviousfrom gure4(a),thedepthdosedistributionsforinitialprotonenergiesof50,85,100,150,200and250MeVcalculatedwithouttakingintoaccountinelasticnuclearinteractionsarereally atoveralargedepthregionofabout70%oftheprotoncontinuous-slowing-downrangeRcsda.Asshownby gure4(b),however,thedosecandeviate
Monte Carlo study of fluence perturbation effects on cavity
74HPalmansandF
Verhaegen
Figure4.Normalizeddepthdosedistributionsformodulatedprotonbeamswithenergiesrangingfrom50MeVto250MeV(a)withoutnon-elasticnucleardosecontributionsand(b)withnon-elasticnucleardosecontributions.Themodulatorwheeldesignwasbasedonthe(Coulomb)stoppingpowersonly.
considerablyfromaconstantvalueiftheenergylossofprotonscausedbyinelasticnuclearinteractionsandtransferredtosecondarychargedparticleswhichareassumedtobelocallyabsorbed(Berger1993b)aretakenintoaccountinwater.Fora250MeVmodulatedprotonbeamthedeviationfromthedesired atdosepro leismorethan15%.Becauseofthisfact,inelasticnuclearinteractionsmustbeincludedinthedesignofprotonbeammodulators.
Themodulatorwheelsusedinthefurthersimulationsofthisworkarethereforedesignedbyalsotakingintoaccountinelasticnuclearinteractionsexceptifotherwiseindicated.TherelativecontributionsofthewheelthicknessesarechangediterativelystartingfromthemostpenetratingBraggcurve.A atdosepro http://paredwiththewheeldesignusedtocalculatethedepthdosedistributionsof gure4,therelativecontributionshadtobechangedbymorethan2%toobtain atdosepro leswithinelasticnuclearinteractionsincluded.
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams
75
Figure5.Spectralproton uencedistributionsfroma100MeVmodulatedprotonbeamatdepthsinwaterof0.3 Rcsda,0.6 Rcsda,0.9 Rcsdaand1.0 Rcsdanormalizedperincidentproton.
Figure5showsprimaryprotonenergyspectracalculatedfora100MeVmodulatedprotonbeamhavinga attotaldosepro lefrom0.25Rcsdato0.95Rcsdaatfourdepths;oneatthebeginningofthe atdoseregion,oneinthemiddle,oneneartheendandonebehindthe atdoseregion.Inthis gurewecanseethatbesidestheapproximatelyGaussianenergyspectrumfromthemonoenergeticbeam,alongtailoflower-energycontributionsduetothesuperpositionofdifferentthicknessesofthewheeloccursinthisspectrum.
Wecanremarkthatbecausetherelativecontributionfromtheselowenergiesincreasesforlargerdepths,thelinearenergytransferandmicrodosimetriclinealenergywillincreaseforthesedepthsasshownbyVerhaegenandPalmans(1997).Thereforeitcanbeexpectedthatalthoughthedosepro leis at,thebiologicalconsequencesofthisdosewillvaryoverthe atdoseregion.Thisis,forexample,shownbyPaganettiandSchmitz(1996)whostudiedthein uenceofthebeammodulationtechniqueonthevariationofrelativebiologicaleffectivenessalongtheSOBP.Ifinthefuturesuf cientknowledgebecomesavailableaboutthemicrodosimetricandbiologicaleffectsofprotonradiationonhumantissueasafunctionofenergy,thewheeldesignshouldbeimprovedinordertoobtaina atbiologicalresponseoveralargedepth.
3.2.Effectsofprimaryproton uenceperturbation
3.2.1.Effectoftheaircavityinwater.Firsttheeffectofinsertinganaircavityisevaluated.Intheory,whentheBragg–Grayprincipleholdsfortheprimaryparticles(contrarytohigh-energyphotonswhereBragg–Grayisappliedtothesecondaryelectrons),theratioofthedoseintheaircavitytothedoseinwatershouldbeequaltothereciprocalofthewater-to-airstoppingpowerratioaveragedovertheprotonspectruminthecavity.
ThedosetowaterDwcalculatedinhomogeneouswaterbothatthecavitycentreandattheeffectivemeasuringpointobtainedwithequation(4)iscomparedwiththedosetowaterDw,acderivedfromtheenergydepositioninthecylindricalaircavityforthedifferentincidentprotonenergies,depthsandcavitysizes.TheratioDw/Dw,accouldberegardedasapdisplperturbationcorrectionfactorintheformalismreferredtointheintroduction.
DwatthedepthofthecavitycentreandattheeffectivemeasuringpointisdeterminedfromthedepthdosedistributionobtainedwithPTRANinhomogeneouswaterforapencilbeam.Thisdistributioniscalculated(Berger1993a)astheaverageenergylossperunit
Monte Carlo study of fluence perturbation effects on cavity
76HPalmansandFVerhaegen
depthinMeVg 1cm2(whichis,duetothereciprocitytheorem,alsotheaverageenergylossperunitdepthonthecentralaxisofanin nitelybroadbeam).Sothedoseatacertainpointonthecentralaxisforacertain eldsizeisobtainedbydivisionofaverageenergylossperunitdepth(expressedasmassperarea)withtheareaoftheincident eldprovidedthatthebeamissuf cientlyextendedlaterallytoavoidprotonsfrombeyondthelateraledgeofthebeambeingabletoreachtheaxisbyscattering.
ToobtainthedosetowaterDw,acdetectedbythecavity,thecavitydoseismultipliedwiththewatertoairstoppingpowerratiooftheprotonspectruminthecavity.Forunmodulatedmonoenergeticbeamsthestoppingpowerratioistakenattheeffectiveenergywhichisderivedfromtheresidualrange.ThelatterrangeiscalculatedasRcsdaoftheincidentprotonsminustheeffectivedepthofthecavityascalculatedbyequation(4).Thisapproachisjusti edbythesmallenergyspreadoftheprotonsinthecavityandbythesmalldependenceofthewatertoairstoppingpowerratioonenergy.ForthemodulatedbeamsthisapproachintroduceserrorsasshownbyMedinandAndreo(1992)becausetheprotonenergyspectraarebroadenedbyspreadingouttheBraggpeak.Table1showsthestoppingpowerratioscalculatedattheeffectiveenergynexttotheratioofstoppingpowersintegratedoverthecalculatedspectraatdifferentdepthsontheSOBP,asforexampleshownin gure5.WeseethatintheperipheralareaoftheSOBPdifferencesofupto0.4%occurandinitscentredifferencesofupto0.2–0.3%.AsshownbyMedinandAndreo(1997a),thein uenceonthestoppingpowerratioofneglectingsecondaryprotonsislessthan0.1%forunmodulatedmonoenergeticprotonbeamsinthestudiedenergyrange.Thisresultalsoholdsforamodulatedbeam,asitcanberegardedasasuperpositionofunmodulatedbeams.
Table1.Water-to-airstoppingpowerratiosatdifferentdepthsdinwaterformodulatedprotonbeamsofinitialenergyEandresidualrangeRresidualatdepthdcorrespondingtoaneffectiveenergyEeff:(S/ρ)wa(Eeff)iscalculateddirectlyfromthemassstoppingpowersforwaterand
wiscalculatedfromthe¯airatenergyEeffusingthetablespublishedbyICRU(1993);(S/ρ)a
protonspectrumatdepthdinwateralsousingtheICRUtables.E(MeV)858585100100100200200200
Depth(cm)1.753.455.202.324.656.987.7115.523.4
Rresidual(cm)4.032.330.585.393.070.7418.210.52.60
Eeff(MeV)69.551.323.781.859.827.2163.0119.054.4
w
Sa
(Eeff)
w
¯Sa
1.1321.1331.1361.1321.1331.1351.1301.1311.1331.1351.1361.1401.1341.1351.1391.1321.1331.136
Table2showsthecalculatedDw/Dw,acratiosforthedifferentincidentprotonenergiesE,depthsofthecavitycentredandcavitydiameters,besidestheeffectivemeasuringdepthzeffandtheeffectiveenergyEeff.Thesixthandseventhcolumnsoftable2showtheratiosDw(d)/Dw,acandDw(zeff)/Dw,acrespectivelyifDwiscalculatedatthedepthofthecavitycentreoratthedepthoftheeffectivemeasuringpoint,andonlyenergydepositedinCoulombinteractionsisincludedinDwandDw,ac.
TheeighthcolumnshowsDw(zeff)/Dw,acwhenenergydepositionsinCoulombinteractionsandinelasticnuclearinteractionsaretakenintoaccount.Thenextcolumnshowsthestatisticaluncertaintiesofthevaluesincolumn6,7and8with5×106histories
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams77
Table2.RatioDw/Dw,acofabsorbeddosetowaterDwinhomogeneouswaterandabsorbeddosetowaterDw,acforacylindricalaircavityasafunctionofincidentprotonenergyE,cavitydepthdandcavityradius.Incolumn6and7onlyenergydepositioninCoulombinteractionsisconsideredwithDwcalculatedatdepthdofthecavitycentreandattheanalyticallycalculatedzeffrespectively.Incolumn8energydepositionininelasticnuclearinteractionsisalsoincluded.Column9givesthestatisticaluncertaintyoftheabsorbeddoseratios.Column10showsDw(zeff)/Dw,acwhenmultiplescatteringisturnedoffinthecalculationofDw,ac.AlsoshownarethedepthzeffoftheeffectivemeasuringpointandtheeffectiveenergyEeff.
1
Energy,E
(MeV)70701001002002007070100100200200
2
Depth,d(cm)1.002.041.003.862.0013.01.002.041.003.862.0013.0
3
Cavityradius(cm)0.250.250.250.250.250.250.500.500.500.500.500.50
4zeff(cm)0.7881.8280.7883.6471.78812.770.5761.6160.5763.4351.57612.56
5Eeff(MeV)62.150.394.169.9192.0136.064.352.995.771.9193.0137.0
6
Dw(d)w,ac
7
Dw(zeff)w,ac
8
Dw(zeff)w,ac
910
Dw(zeff)w,ac
(C)(C)(C+N)0.9720.9760.9590.9700.9190.9420.9720.9750.9600.9680.9200.942
SD0.0010.0010.0010.0010.0010.0020.0010.0010.0010.0010.0010.002
(noscattering)0.9970.9970.9970.9960.9990.9990.9990.9971.0001.0001.0001.000
Unmodulatedbeams
1.0211.0331.0071.0160.9991.0001.0471.0721.0181.0351.0021.005
0.9940.9920.9950.9960.9970.9960.9950.9920.9970.9940.9980.996
Modulatedbeams8510020085100200
3.374.5015.13.374.5015.1
0.250.250.250.500.500.50
3.164.2914.92.954.0814.7
54.763.5122.057.165.7124.0
0.9981.0000.9980.9960.9971.002
1.0010.9990.9990.9980.9981.004
0.9840.9840.9630.9820.9800.967
0.0020.0020.0030.0010.0020.002
1.0011.0021.0000.9980.9991.003
fortheunmodulatedbeamsand107historiesforthemodulatedbeams.ThelastcolumnshowsagainDw/Dw,acwhenmultiplescatteringisturnedoffinthecavitydosecalculationswithastandarddeviationthatwaslessthan0.1%forallsimulations.
Startingthediscussionfortheunmodulatedbeams,itisclearfromcolumns6and7thatforthe70MeVand100MeVbeamsDw(d)issigni cantlyhigherthanDw,ac,whereasDw(zeff)agreesmorecloselywithDw,ac.Forthe200MeVbeam,differencesaresmaller,butgenerallyDw,acagreesbetterwithDw(zeff)thanwithDw(d).NeglectinginelasticnuclearscatteringandcomparingthevaluesofDw(zeff)/Dw,acforunmodulatedprotonbeamswithandwithouttakingintoaccountprotonmultiplescattering(columns7and10),weseethatfortheunscatteredbeamtheagreementofDwandDw,acisformostcasesbetterthanforthecompletesimulationwhereperturbationsadditionaltothedisplacementofthemeasuringpointrangingfrom0.2%to0.8%areobtained.Apartoftheseperturbationscanbeattributedtoscattering.Theobservationthatinallcasesthedoseinthecavityislargerthanthedoseinwaterattheeffectivepointofmeasurementcanbeexplainedbecauseparticlesthatundergoanimportantnumberofscatteringinteractionstravelalongerdistancebeforetheyenterthecavity,thushavingalowerenergyforwhichthestoppingpowerishigher.ThesmalldeviationsfromunityforDw(zeff)/Dw,acwith
Monte Carlo study of fluence perturbation effects on cavity
78HPalmansandFVerhaegen
scatteringturnedoffindicatethattheassumptionoflocallineardependenceofDwonzandtheneglectingofprotonenergydegradationovertheaircavityinthesemianalyticalmodel(seeappendix)isnotcompletelyjusti ed.Neglectingenergydegradationunderestimatesthedoseattheeffectivemeasuringpointwhichisconsistentwiththeresultsofcolumn10intable2.
Whencomparingcolumns7and8animportantdifferenceshowsupduetotheinclusionofenergydepositionfrominelasticnuclearinteractions.ThereasonisthattheratioofthestoppingpowersinwaterandairisnotequaltotheratiooftotalinelasticnuclearcrosssectionswhichweadoptedfromJanni(1982).Soitcannotbejusti edtoscalethecontributionofinelasticnuclearenergydepositionswiththestoppingpowerratio.Thiscontributioninaircanberescaledtowaterseparatelywiththeratiosoftotalinelasticnuclearcrosssectionsasfollows:
w σ wS
+Dair(N)(12)Dw,ac=Dair(C)
ρaAawithDair(C)thedosedepositedinCoulombinteractionsintheaircavity,(S/ρ)wathewater
toairmassstoppingpowerratio,Dair(N)thedosedepositedininelasticnuclearinteractionsintheaircavityand(σ/A)watheratiooftotalinelasticnuclearcrosssectionspernucleoninwaterandair.Applyingequation(12)theDw/Dw,acratioscalculatedbytakingintoaccountinelasticnuclearinteractionsbecomeexactlythesameasthoseofcolumn7.Thisindicatesthattheseparatescalingofthiscontribution,whichincreaseswithincreasingprotonenergies,doesnotin uencetheperturbationeffectsstudied.Nevertheless,itshouldbeconsideredforpurposesofaccurateabsoluteionizationchamberdosimetry.Furthermore,itshouldbeclearthattheeffectweshowforinelasticnuclearcontributionsisprobablyoverestimatedasonlyafractionofthisinelasticnuclearenergytransfergoestosecondarychargedparticlesandcontributestothelocallydepositeddose.Inwater,asshownbySeltzer(1993),animportantpartistransferredtolong-rangeneutronsthatdonotcontributetothelocaldose.Itisnotunlikelythatforair,consistingmainlyofnitrogen,thesituationissigni cantlydifferent.AnotherremarkisthatthetotalinelasticnuclearcrosssectionsfornitrogenareinterpolatedfromthedatagivenbyJanni(1982)assumingasmoothdependenceofthistotalcrosssectiononatomicnumber.Further,thechargedsecondaryparticlesoriginatingfrominelasticnuclearinteractions,especiallytheimportantfractionofsecondaryprotons,canalsobetransportedfromthecavitytothewallandviceversa,therebypossiblycompensatingtheincreasedenergytransferredtoaircomparedtowater.Theeffectsarereducedto50%to70%(equaltotheenergyfractiontransferredtochargedsecondaries(Seltzer1993))if(i)theinterpolationprocedureconcerningthetotalcrosssectionsiscorrect,(ii)theratioofenergytransferredtochargedandunchargedparticlesininelasticnuclearreactionsiscomparableforairandwaterand(iii)theassumptionisapplicablethatthetotalenergytransferredtochargedsecondariesduetoinelasticnuclearinteractionsisdepositedlocally.Recentlyanumberofcomparisonsofionizationchamberdosimetryandwatercalorimetryinbothmodulatedandunmodulatedclinicalprotonbeamsbetween85MeVand250MeVhavebeenperformed(Schulzetal1992,VatnitskyandSiebers1994,Vatnitskyetal1996,Palmansetal1996).Theseexperimentsshowthationizationchamberdosimetryisconsistentwithwatercalorimetrywithin2%overthecompleteclinicalenergyrangewhenapplyingthe(Wair)precommendedbytheAAPMprotocol(AAPM1986).Thisprovesthattheactualeffectsofinelasticnuclearenergydepositionandespeciallytheirdependenceonprotonenergymustbelessthanshownintable2.However,theycouldalsobeimportantinthediscussionofthe(Wair)pvaluewhenconclusionsregardingitwouldbedrawnfromcomparisonsbetweencalorimetrymeasurementsandionizationchambermeasurements.
Monte Carlo study of fluence perturbation effects on cavity
Cavitydoseresponseinclinicalprotonbeams79
Formodulatedbeams,inelasticnuclearinteractionswereneglectedandthedoseratioswerecalculatedwithmodulatorwheelsgivinga atdosepro leforonlyCoulombinteractions,i.e.thoseusedfor gure4.Dw(d)/Dw,ac,Dw(zeff)/Dw,acandDw(zeff)/Dw,acwithscatteringturnedoffareallclosetounityandthesmalldeviationsfromunitycouldbeattributedtolocal uctuations(‘ripples’)withamagnitudeofsometenthsofapercentonthedepthdosedistributionduetothesuperpositionofindividualBraggcurvesintheSOBPregion.ForDw(zeff)/Dw,acwithinelasticnuclearcontributionsincluded,othermodulatorwheelsgivinga atdosepro leforthetotalenergydepositionweresimulatedasindicatedinsection3.1.Regardingthefractionofenergydepositedininelasticnuclearinteractionssimilar,butsmaller,effectsasforunmodulatedbeamsareobserved.
Table3.Similartotable2butforsphericalcavitiesandonlyforunmodulatedmonoenergeticbeams.
1
Energy,E
(MeV)70701001002002007070100100200200
2
Depth,d(cm)1.002.041.003.862.0013.01.002.041.003.862.0013.0
3
Cavityradius(cm)0.250.250.250.250.250.250.500.500.500.500.500.50
4zeff(cm)0.8131.8530.8133.6721.81312.790.6251.6650.6253.4841.62512.61
5Eeff(MeV)61.950.093.969.719213563.852.395.471.5193136
6
D(d)w,ac
7
Dw(z)w,ac
8
Dw(z)w,ac
910
Dw(z)w,ac
(C)(C)(C+N)0.9740.9800.9610.9730.9210.9460.9730.9780.9590.9710.9200.947
SD0.0010.0010.0010.0010.0010.0010.0020.0010.0010.0010.0030.002
(noscattering)0.9980.9970.9990.9991.0011.0010.9980.9960.9990.9991.0011.001
Unmodulatedbeams
1.0201.0331.0081.0161.0001.0041.0421.0661.0161.0321.0011.009
0.9960.9970.9980.9980.9981.0000.9960.9950.9950.9970.9991.002
Table3showsthesamedataasintable2calculatedforsphericalcavitiesfortheunmodulatedbeams.DuetotheshapeofthecavitytheratiosDw/Dw,acareslightlydifferentfromthoseforthecylindricalcavities,butthetendenciesdescribedinthepreviousparagraphscanagainbeobserved.
3.2.2.Effectofreplacingwaterwithwall.Figure6showscalculatedratiosofthedoseinthecentralaircavitywithandwithoutwallforamonoenergeticunmodulated100MeVprotonbeamatadepthof3.859cm(=0.5 Rcsda)fordifferentwallmaterialsasafunctionofwallthicknessforacylindricalcavitywithinnerradiusof0.25cm.Wecanobservethatinthiscasearelativelylargedoseincreaseiscausedbyexchangingwaterwithwallmaterialaroundthecavity(about0.5%permmwallthicknessforgraphite).Thiseffectcanbeexplainedbythedecreaseofeffectivewaterdepthwithincreasingwallthicknessasisshownanalyticallyintheappendixanddiscussedinthefollowingparagraphs.
Table4givesanoverviewofourresultswithrespecttothepercentagecavitydosechangepermmwallthicknessforfourdifferentwallmaterialsasafunctionofprotonenergy,measuringdepthandcavitydiameter.Theywerederivedbylinear ttingofdatacorrespondingtothoseshownin gure6havingstatisticaluncertaintiessmallerthan0.2%foreachwallthickness.Thenumberofhistoriesrequiredvariedfrom7×105forthe