手机版

Monte Carlo study of fluence perturbation effects on cavity

发布时间:2024-11-08   来源:未知    
字号:

Monte Carlo study of fluence perturbation effects on cavity

HomeSearchCollectionsJournalsAboutContact usMy IOPscience

Monte Carlo study of fluence perturbation effects on cavity dose response in clinical protonbeams

This article has been downloaded from IOPscience. Please scroll down to see the full text article.1998 Phys. Med. Biol. 43 65

(http:///0031-9155/43/1/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 202.120.79.103

The article was downloaded on 10/01/2011 at 07:50

Please note that terms and conditions apply.

Monte Carlo study of fluence perturbation effects on cavity

Phys.Med.Biol.43(1998)65–89.PrintedintheUKPII:S0031-9155(98)86156-3

MonteCarlostudyof uenceperturbationeffectsoncavitydoseresponseinclinicalprotonbeams

HugoPalmansandFrankVerhaegen

DepartmentofBiomedicalPhysics,UniversityofGent,Proeftuinstraat86,B-9000Gent,Belgium

Received21July1997,in nalform4September1997

Abstract.Currentprotocolsforclinicalprotonbeamdosimetryhavenotimplementedanychamber-dependentcorrectionfactorsforabsorbeddosedetermination.ThepresentworkinitiatesaMonteCarlostudyofthesefactorswithemphasisonproton uenceperturbationeffectsandpreliminarycalculationsofperturbationeffectsfromsecondaryelectrons.

TheprotonMonteCarlocodePTRANwasmodi edtoallowsimulationofprotontransportinnon-homogeneousgeometriesofbothunmodulatedandmodulatedbeams.Thedosetowaterderivedfromthedosecalculatedinanaircavityagreeswellwithresultsfromanalyticalcalculationsassumingadisplacementofthepointofmeasurement.Forunmodulatedbeamssmalldifferences,limitedto0.8%,couldbepartiallyattributedtoprotonmultiplescattering.Effectsofreplacingwateraroundthecavitywithwallmaterialareexplainedbytheintroductionofawater-equivalentwallthickness.Formodulatedbeamsnosigni cantperturbationeffectsarise.Secondaryelectronspectraarecalculatedanalytically.PreliminaryelectrontransportcalculationswithEGS4showthatwallperturbationsoftheorderof1%couldresult.

Perturbationeffectscausedbytheenergytransportofsecondaryparticlesfrominelasticnuclearinteractionshavenotbeenstudiedhere.Inclusionofinelasticnuclearenergytransfersinthecavitydose,assumingtotallocalabsorption,indicatethatseparatescalingofthiscontributionwiththeratiooftotalinelasticnuclearcrosssectionscouldbeimportant.

1.Introduction

CurrentdosimetryprotocolssuchastheAAPMTG16protocol(AAPM1986)andtheECHEDprotocol(Vynckieretal1991,1994)fordosetowaterdeterminationwithionizationchambersinclinicalprotonbeamswithanenergyrangeof50–250MeVhavenotincludedanychamber-dependentcorrectionfactors.

Medinetal(1995)proposedanexpressionfortheabsorbeddosetowaterDw,QatthereferencepointinaprotonbeamcorrespondingtotheNDformalismoftheIAEACodeofPracticeforphotonandelectronbeamdosimetry(IAEA1987)inwhichaperturbationcorrectionfactorpQisde ned:

Dw,Q=MQND,Q0

(Wair)Q

(sw,air)QpQ

(Wair)Q0

(1)

inwhichQandQ0denotetheprotonbeamqualityandthecalibrationbeamqualityrespectively,MQistheionizationchamberreading,correctedforatmosphericnon-standardconditions,forrecombinationandforpolarityeffects,ND,Q0istheabsorbeddosetoaircalibrationfactorfortheionizationchamber,(Wair)Q/(Wair)Q0istheratioofthemeanenergyrequiredtoproduceanionpairinthetwobeamqualitiesand(sw,air)Qisthewater

c1998IOPPublishingLtd0031-9155/98/010065+25$19.50

65

Monte Carlo study of fluence perturbation effects on cavity

66HPalmansandFVerhaegen

toairmassstoppingpowerratiointheprotonbeam.Inprinciple,restrictedstoppingpowersshouldbeusedtoaccountforthedistinctionbetweenenergylossestosecondaryelectronsthatareabletotransferenergyawayfromthegenerationpointandthosethatarenot,asforphotonbeams(SpencerandAttix1955).Thisraisesthequestionofthecut-offenergyandofthedealingwithtrack-endswhichwewillnotdiscusshereasitisoutofthescopeofthepresentwork.ThetotalperturbationcorrectionfactorpQconsistsoftheproductoffactorsforthenon-waterequivalenceofthewall(pwall),forthecentralelectrodeeffect(pcel gbl),fortheperturbationofelectron uenceduetoinsertionoftheaircavityinwater(pcav)andoptionally,ifthegeometricalcentreofthechamberisusedasreferencepoint,forthedisplacementeffect(pdispl).Wecanremarkthatthede nitionofpcavcouldbegeneralizedto uenceperturbationofallsecondarychargedparticles.

Regardingthe(Wair)pvalueforprotonsthereisstillarelativelylargeuncertaintyduetothedif cultyofdeterminingthisfactor.RecentcomparisonsofionizationchamberdosimetryandwatercalorimetrybySiebersetal(1995)andPalmansetal(1996)indicatethatthevalueadoptedbytheAAPMprotocol(AAPM1986)isclosertorealitythanthevaluerecommendedbytheECHEDprotocol(Vynckieretal1991,1994).However,onlytheproductof(Wair)pand(sw,air)pcanbedeterminedaccuratelybyuseofwatercalorimetry.

Regarding(sw,air)pforclinicalprotonbeams,importantworkhasbeendonebyMedinandAndreo(1992,1997a).Theyshowedthatthecontributionsfromsecondaryprotonstosw,airarelessthan0.1%,whereasthecontributionfromsecondaryelectronscouldchangethewatertoairstoppingpowerratiobyupto0.6%forprotonsintheclinicalenergyrange.

ItisgenerallyassumedthattheperturbationcorrectionfactorpQisveryclosetounityorthat,atleast,itsdeviationfromunityiswellwithinthetotaluncertaintyofthe naldose.Regardingprimaryproton uenceperturbations,thiscanbearguedtobeduetothelowscatteringcharacteristicsofprotons.Perturbationeffectscausedbyanincompletesecondaryelectronequilibriumarealsocommonlyneglected.Themaximumenergyofsecondaryelectronsisthreeordersofmagnitudesmallerthantheprotonenergysotherangeinwaterofmostsecondaryelectronsisverysmallanditisassumedthatonlysmalleffectsaretobeexpected.Furthermore,perturbationeffectscausedbysecondaryparticlesoriginatingfrominelasticnuclearinteractionsarealsoneglected.Forthemajorityofthechargedsecondaryparticlesthestoppingpowersaremuchhigherthanforprimaryprotonsresultinginveryshortranges.Onlyneutronsandsecondaryprotonshaverangeslargeenoughtotransportasigni cantpartoftheenergyawayfromthegenerationpoint.Thetransportofsecondaryprotonshasasigni cantin uenceonthedepthdosedistributionasshownbyMedinandAndreo(1997a).ThoughrecentexperimentalinvestigationsbyMedinetal(1995)andPalmansetal(1996)showthatthereiseveryreasontotakeintoaccountchamber-dependentperturbationcorrectionfactors,thepotentialperturbationeffectsshouldbesmallbecauseionizationchamberdosimetryinclinicalprotonbeamscanbeconsistentlyperformedwithin1%to2%usingdifferentchambertypeswithouttakingintoaccountperturbationcorrectionfactors.

Somecalculationshavealreadybeendoneonthestudyofchamber-dependentperturbationeffectsandtheimportanceofconsideringthein uenceofsecondaryelectronsonperturbationcorrectionfactorsandstoppingpowerratios.Bichsel(1995)studiedthein uenceofcavityshapeandcavitymaterialontheshapeoftherecordeddepthdosedistributions,especiallyaroundtheBraggpeak.Thein uenceofsecondaryelectronshasbeenstudiedbeforebyLaulainenandBichsel(1972).Theycalculatedthatfor50MeVprotonstraversinga1mgcm 2thickfoil,about10%oftheenergylostbytheprotonsescapesfromthefoilbysecondaryelectronsandthatforaplanedetectortheenergytransferredbysecondaryelectronsfromthefrontcavitywalltothecavitymediumandfrom

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams67

thecavitytothebackwallisnotinequilibrium.MedinandAndreo(1992)alsocommentedontheeffectofsecondaryelectrons,andremarkedthattheassumptionofsecondaryelectronenergydepositionatthesiteoftheirproductionmightcauseinaccuraciesintheabsorbeddosedeterminationsincetherangeofthemostenergeticsecondaryelectronsinairisofthesameorderofmagnitudeasthedimensionsofanionizationchamber.

Inthepresentworkwehavestudiedsomeaspectsoftheperturbationcorrectionfactorsdiscussedinthepreviousparagraphsbothinunmodulatedandmodulatedprotonbeams,fordifferentcavityshapesanddimensions,wallmaterials,wallthicknessandprotonenergies.Forthispurpose,theprotonMonteCarlotransportcodePTRAN(Berger1993a)isused.Inpreviousworkthetransportofprotonsinmaterialsotherthanwaterwasimplementedinthiscode(PalmansandVerhaegen1997).Thisallowssimulationofmodulatedprotonbeams.InthepresentworktheimplementationofcylindricalandsphericalgeometriesinPTRANisrealized.Theeffectofinsertinganaircavityinhomogeneouswaterontheprimaryproton uenceisinvestigatedandassociatedwithareplacementcorrectionfactorpdisploradisplacementofthepointofmeasurement.Asemi-analyticalmodelforthecalculationofthiseffectivemeasuringpointisproposedandcomparedwiththeMonteCarloresults.Theeffectofreplacingwateraroundtheaircavitywithwallmaterialwhichgivesrisetoacontributiontothewallcorrectionfactorpwallisalsocalculated.

Apreliminarystudyofthecontributionofsecondaryelectron uenceperturbationstopcavandpwallhasbeenstartedusingEGS4electrontransportcalculations.Thebalancebetweenenergydepositedinthewallwhichistransferredtothecavitybysecondaryelectronsandviceversaisevaluatedusingelectronspectrathatareanalyticallyderivedfromtheprotonspectra.

Fluenceperturbationeffectsbysecondaryheavychargedparticlesoriginatingfrominelasticnuclearinteractionsarenotevaluatedhere.Themainreasonisthatexceptwhenoxygenisthetargetparticle(Seltzer1993),thecrosssectionsofformationfortheseparticlesarenotknown.However,itisnotunlikelythattheseparticlescouldhaveimportanteffectsoncavitydoses,especiallyatthehigherenergies.MedinandAndreo(1997a)showedthatfora200MeVbeamanimportantfractionofthesechargedsecondariesistransportedoveraconsiderablerange,therebyin uencingthedepthdosedistributionsigni cantly.Furtherinvestigationofthiseffectiswarranted.

Withthisstudywedonotintendtocalculateperturbationcorrectionfactorsforrealionizationchambersbutweintendtoindicatehowwaterabsorbeddoseshouldbeevaluatedfromionizationchambermeasurementsinprotonbeamswithrespecttopotentiallyexistingperturbationeffects.2.Materialsandmethods2.1.TheprotonMonteCarlocode

ThetransportcodeusedinthisworkisbasedontheprotonMonteCarlocodePTRAN(Berger1993a).Thiscodesimulatesmonodirectionalmonoenergeticpencilprotonbeamsinhomogeneouswaterwithouttransportofsecondaryparticles(electronsandsecondariesfrominelasticnuclearinteractions).ItcalculatesprotontransportusingaclassI schemefollowingBerger’sclassi cationofMonteCarloparticletransportschemes(Berger1963).Theparticlestepsaredeterminedinaprecalculatedstep-sizegridwhichislogarithmicinthelowerenergyrangewherethestoppingpowerincreasesmorerapidlywithenergydegradationthaninthehigherenergyrange.Thecodecalculatesdepthdosedistribution,radialdistributionsandenergy uencespectrainslabsde nedinahomogeneouswater

Monte Carlo study of fluence perturbation effects on cavity

68HPalmansandFVerhaegen

geometryformonoenergeticpencilbeams(Berger1993a).Inpreviousworkwedescribedmodi cationsandextensionsoftheoriginalcodeinordertocalculatedepthdosepropertiesforlow-Zmaterialsotherthanwater(PalmansandVerhaegen1997).Thehomogeneousslabgeometryoftheoriginalcodewasmodi edtoallowdifferentslabmaterialstobeusedinonesimulation.

2.2.Implementationofmodulatorwheels

Forthepresentwork,additionalchangesaremadetoallowsimulationofmodulatedprotonbeams.Inclinicalpracticethemodulationofprotonbeamsisachievedusingamodulatorwheelwithavaryingthicknessthatisrotatedbetweentheincidentprotonbeamandthepatientorwaterphantomtoobtaina atdosepro leindepthbyspreadingouttheBraggpeak.ThemodulatorwheelisimplementedintheprotonMonteCarlotransportcodeasanadditionallayerofmodulatorwheelmaterialinfrontofthewaterphantom.Foreveryincidentprotonthethicknessofthislayerissampledfromthedistributionofthicknessesthatoccurinthewheel.2.3.Implementationofcavities

Thecalculationofdosedepositedincavitiesrequiredsigni cantchangestotheoriginalcodeanditsconcepts.Onehastodealwithseveraldif cultiestypicalofthiskindofproblemandcomparabletothoseencounteredinelectrontransportcalculations,suchasthecrossingofboundariesbetweendifferentmedia,thescoringofenergydepositedalongaparticletrack,calculationof uencespectraetc.Thefollowingparagraphsdealwiththesolutiontotheseproblems.Thesimulatedgeometriesarelimitedtoconcentricsphericalorcoaxialcylindricalcavities.Furthermoretheincidentbeamgeometryisextendedtobroadbeams(square,rectangularorcircularlateraldistribution)aswellasbeamswithacertainenergydistribution.

Thecrossingofboundariesbetweendifferentmediaisdealtwithasfollows.RoutinesareaddedtoPTRANthatcalculatetheintersectionofthestraightlineconnectingthestartandendpointofthesampledparticlestepandtheboundary.Themodularprogrammingoftheseroutinesallowsessentiallyanyboundaryshape.Thestraightlineiscalculatedusingitsparameterrepresentation.Theintersectionpointofthestraightlinewithaboundaryisdeterminedtocheckwhethertheparticletraversestheboundarywithinthesampledstep.Ifaboundarycrossingbetweendifferentmediaoccurs,thestepoftheprotoniscutattheboundary.Fortheenergyevaluationtheenergydecreasealongthestepisassumedtobelinear.Anewstepandscatteranglearethensampledforthenewmedium.Withthissimpli edapproachanumberoferrorsareintroduced.First,theactualcrossingpointisnotnecessarilyonthestraightline.Duetothesmalllateraldisplacementsthatprotonsundergo,wecanassumethatthiscausesnegligibleerrorsmainlybecauseofthesmallscatteringangles.Weveri edthattheaveragelateraldisplacementperstepintheMonteCarloprotontransportvariesfromabout0.1%ofthesteplengthat200MeVtoabout1%atenergiesbelow1MeV.Thesteplengthsat200MeVand1MeVareabout10 3gcm 2and10 6gcm 2respectively.Secondly,themultiplescatteringangleisnotcorrectedafterthecut-offofastep.IfwewouldreassesstheMoli`eredistributionfortheshorterstep,itcouldbeincorrectforveryshortstepsasshownbyAndreoetal(1993).Again,weassumethattheintroducederrorsarenegligibleforthesamereasonsasinthe rstpoint.Furthermore,theenergyisactuallynotdepositedequallyalongeachprotontracksegmentand,inconsequence,theassumptionoflinearenergydecreasealongthestepisonlyan

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams69

approximation.Astheenergylossespersteparesmall,bychoosingalogarithmicstepsizegridinPTRANforthelowerenergieswherethestoppingpowersshowthelargestvariationswithenergy,theintroducederrorsareminimized.

Speci callyforthecylindricalandsphericalcavitiesinthesimulationsofthisworkthefollowingmethodsareusedtosavecomputingtime.A‘geometryinterrogationreduction’methodisusedtoavoidunnecessarytesting.Thereforeaslabregionperpendiculartotheincidentbeamisde nedinwhichcavitiesarepresent.Whenaparticleentersthisregionatestisactivatedtoevaluateiftheparticlecrossesacavityborder.ThetransportinallotherslabregionsremainsessentiallythesameasintheoriginalPTRANcode.Forthesimulationofwallperturbationeffects,atwo-cavitygeometryissimulated.Theinnercavityissettoair,theregionbetweeninnerandoutercavityissettowallmaterialorwater.A‘correlated-sampling’technique(see,forexample,MaandNahum1994)wasusedtosimulatedifferentwallmaterials.Thismeansthatwhenaparticleenterstheoutercavity,theenergy,thespatialcoordinatesanddirectionalcoordinatesoftheprotonarestoredaswellastherandomnumberofthesimulationatthatpoint.Afterthetransportofthisprotonis nished,thetransportsimulationisrestartedwiththestoredconditionsbutwiththewallsettoanothermaterial.Thisapproachnotonlysavescomputingtimebutalsoimprovesthestatisticalcorrelationofthedosesinthecavitywithandwithoutwalls.

TheenergydepositedinthecavityisevaluatedasthesumoftheenergiesaprotonloseswhilepassingthroughthecavitybyCoulombinteractions(includingelasticnuclearscattering)andbytheenergytransfertosecondaryparticlesbyinelasticnuclearinteractions.Inanycasetheenergyaprotonlosesisassumedtobelocallyabsorbed.Whenappropriate,adiscussionisincludedwherethisassumptionmightin uencetheresults.Inaddition,apreliminarystudyofpossibleeffectsofsecondaryelectronswitharangelargeenoughtotransportenergyfromoneregiontoanotherisperformed.Theseeffectsareevaluatedseparatelyasexplainedinsection2.6.Anexplanationoftheobservedeffects,includingthepotentialrelationtoparticularperturbationcorrectionfactorsisdiscussedinsection3.Protonspectrainthedifferentcavitiesarecalculatedtoenablethesubsequentcalculationofsecondaryelectronspectra.Thisisdonebyscoringthetracklengththattheprotontraversesinthecavityandbydistributingthistracklengthovertheenergyandangularbinsofthespectrum.Uptonowonlycylinders(optionallywithtopandbottomplane)andspheresareimplemented.

2.4.Simulatedgeometryandcases

Forthecalculationofcavity-dependenteffectsondosedeterminationthegeometryof gure1isused.The(air- lled)cavityvolume,thewallthicknessandthewallmaterialarevariedforcylindricalandsphericalcavities.Theradiiofthecavitiesweretakenas0.25and0.50cmandtheheightofthecylindricalaircavitywastakenas1.0cm.Wallmaterialsusedarewater,graphite,PMMA(Lucite,Perspex),polystyreneandtissue-equivalentA150.Toevaluatetheeffectofprotonmultiplescatteringseparately,calculationsarealsodonewithscatteringturnedoff.Thecalculationsareperformedformonoenergeticprotonswithenergiesof70,100and200MeVfortheunmodulatedbeamsandwithenergiesof85,100and200MeVforthemodulatedbeams.Fortheunmodulatedbeamsthecavitycentreswereplacedatashallowdepth(1.0cmforthe70MeVand100MeVbeams,2.0cmforthe200MeVbeam)andatdepthscorrespondingtoabouthalfthecontinuous-slowing-downrangeRcsda(2.0cm,3.4cmand13.0cmrespectively).ForthemodulatedbeamspolystyrenemodulatorwheelswereusedresultinginaspreadoutBraggpeak(SOBP)fromabout0.3 Rcsdato1.0 Rcsda.Thecavitieswereplacedinthecentreofthe atdoseregion

Monte Carlo study of fluence perturbation effects on cavity

70HPalmansandFVerhaegen

(3.4cmfor85MeV,4.5cmfor100MeVand15.1cmfor200MeVbeam).Thethicknessofthecavitywallvariedfrom0.025cmto0.8cm.Forthecasewherethecavitywastooclosetotheentranceplaneofthephantomtoallowforthe0.8cmwallthickness,0.4cmwasusedasthemaximumvalue.Thesewallthicknessesaremuchlargerthanthoseoccurringinionizationchambersforclinicalprotondosimetry,buttheiruseallowsamoreaccurateinvestigationofperturbationeffectsandmakestheinterpolationtorealisticwallthicknesseseasier.Formosteffectsonlysomeoftheabovedescribedsituationsaresimulatedextensively(forexample,onlyforcylindricalcavities)assimilareffectsariseforother

situations.

Figure1.Geometrysimulatedtostudypotentialperturbationeffectsincavitydoseresponse.Thetwoconcentricalsphericalorco-axialcylindricalcavitiesaresurroundedbyhomogeneouswater.Theinnercavitycontainsair,theregionbetweenthetwocavitiesconsistsofwallmaterial.Twodottedlinesde nethewaterlayercontainingthecavityinwhichtheboundarycrossingtestisswitchedon.Forthesimulationofmodulatedbeamsanadditionallayerwithvariablethickness(sampledfromthewheelthicknessdistribution)thesimulatedwaterphantomisaddedupstream.Thebeamissuf cientlylaterallyextendedtoavoidparticlesfromthebeamedgereachingthecavities.

2.5.Primaryproton uenceperturbationwithasemi-analyticalmethod

Thesimulationsarecomparedwithasemi-analyticalmethod.Inthis,theeffectivewaterdepthofthecavityisapproximatedanalyticallyassumingthatnoscatteringoccurs(seeappendix).Foracylindricalcavityitiscalculatedas:

x=+R1

2(1 F)I8FR122

withI= (R2 x2)(R1 x2)dx(2)zeff=d

πR13πx= R1

forasphericalcavity:

r=+R1

3(1 F)I3FR122

(R2 r2)(R1 r2)rdr(3)withI=zeff=d 4R1r=0wheredisthedepthofthecentreofthecavity,R1istheradiusofthecavity,R2isthe

outerradiusofthewallandF=Rcsda,water/Rcsda,wallfortheincidentprotonenergy.Foratheoreticalaircavitywithoutwallsinwaterthepreviousexpressionsbecome

8R1

zeff=d (4)

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams

forcylindricalcavitiesand

71

3R1

(5)

4

forsphericalcavitiesandzeffbecomesananalyticalestimateforthedepthoftheeffectivepointofmeasurement.

BothatthedepthofthecavitycentreandattheeffectivewaterdepthzeffthedoseisevaluatedfromthedepthdosedistributioncalculatedwithPTRANinhomogeneouswaterwhichexplainswhythemethodistermedsemi-analytical.Thedosethusobtainediscomparedwiththedosecalculatedintheaircavity,scaledwiththewatertoairstoppingpowerratioand,ifnecessary,forapartwiththeratiooftotalinelasticnuclearcrosssections(seesection3.2.1).

zeff=d

2.6.Effectofsecondaryelectronperturbation

2.6.1.Generationofsecondaryelectrons.ThecalculationofsecondaryelectronspectrausedinthisworkisdonewiththeclassicalRutherfordcrosssectionforcollisionbetweenanincidentprotonwithafreeelectron.AmoreaccurateapproachusingtheBahbacrosssectionresultsincrosssectionswhichareonlyslightlydifferentfromtheRutherfordcrosssectionsasindicatedbyMedinandAndreo(1997b).Weassumethatthemoresimpli edapproachinourworkdoesnotin uencetheresultsqualitatively.

TheclassicalRutherfordcrosssectiondifferentialinenergyisgivenby(see,forexample,Ruddetal1992):

24πr0Rdσ=(6)dWTW2

whereWisthesecondaryelectronenergy,σthecrosssectionperelectronandperincidentproton,r0theBohrradius,RtheRydbergenergyandTthekineticenergyofanelectronthatwouldhavethesamevelocityastheincidentproton(T=m/MT0,withmtheelectronmass,MtheprotonmassandT0theprimaryprotonenergy).IntheRutherfordapproximationacertainsecondary-particleenergycorrespondswithexactlyonescatterangleθ relativetotheincidentparticleaxis,whichcanbeevaluatedbyclassicalmechanics:

1MW

.(7)cosθ =

2mT0

Themaximalsecondaryelectronenergycorrespondstothesmallestanglesandisgivenby

m

Wmax=4T0.(8)

M

ThenumberofelectronsNthatiscreatedperunitofproton uence(cm 2)inavolumedVisthen

Z

(9)N=NAρσdV

A

whereNAisAvogadro’snumber,ρthemassdensityofthemediumandZ/Atheaverageratioofatomicnumberandatomicmassofthemedium.

Foreachbinoftheprotonspectrumthesecondaryelectronspectrumiscalculatedaccordingtoequation(6)usingenergybinsof1keVandalowercut-offenergyof10keV.Thecorrespondingelectronemissionanglesθ relativetotheprotondirection(thez -axisof gure2)arecalculatedusingequation(7).Thenumberofsecondaryelectronsineachbinisuniformlydistributedafterwardsovertheazimuthalangle between0and2πaround

Monte Carlo study of fluence perturbation effects on cavity

72HPalmansandF

Verhaegen

Figure2.Geometricalsituationofthegenerationofsecondaryelectrons,indicatingtheabsoluteandrelativeangulardirectionoftheincidentprotonandsecondary

electron.

Figure3.FiveregionsinwhichtheprotonspectraarecalculatedduringtheMonteCarlosimulation.IneachoftheseregionsthesecondaryelectronspectraarederivedanalyticallyandtransportedwithEGS4tocalculatetheenergytranfersbyelectronsfromoneregiontoanother.

theprotondirection.Theelectronemissionanglewithrespecttothecentralaxisoftheprimarybeam(thez-axisof gure2)iscalculatedusingequation(10):

cosθ=cosθ cosθ0 sinθ sinθ0cos

whereθ0representstheangleoftheproton’s ightdirectionrelativetothez-axis.2.6.2.Transportofsecondaryelectrons.Thetwo-dimensionalelectronspectracalculatedfromtheprimaryprotonspectrawereusedasinputforelectrontransportsimulationswiththeMonteCarlocodeEGS4(Nelsonetal1985).Separateinputspectrawereusedforelectronsthatwerecreatedbyprotonsindifferentregions.Fiveregionswerede ned:

(10)

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams73

theaircavity,thewallandthewatershellaroundthewallofwhichthewallandwatershellweresubdividedinafront(upstream)andback(downstream)sectorasshownin gure3.Electronsweretransporteddowntoanenergycut-offECUTof1keV.CrosssectionsforelectroninteractionswereaccordinglygeneratedintheEGSpreprocessorstage(AE=1keV).TheelectronstepsizealgorithmPRESTA(BielajewandRogers1987)wasinvokedtoimproveelectrontransportacrossmediumboundaries.TheEGS4algorithmfortransportoflow-energyelectrons,developedbyMaandNahum(1992)wasused.Rogers(1993)pointedoutthatPRESTAshouldbeusedincombinationwithanESTEPEvalueaslowas1%toachievereliableresultsfromMonteCarlosimulationsofionizationchamberresponse.InthisworksimulationsweredonewithESTEPEvaluesof1%and50%.InthelattercasePRESTAtakesfullcontrolovertheelectrontransport.Separaterunswereperformedforthedifferentwallmaterials(A150,graphite,PMMA,polystyrene,water)forsphericalcavities.Foreachrun,theenergydepositionbytheelectronswasscoredin15contributions:fortheelectronsgeneratedinthe veregionspreviouslyde ned,theenergydepositioninthethreeregionstakenbytheaircavity,wallandwatershellarescored.Toobtainasmallstatisticalvariance,inatypicalrun20to25timesmoreelectronsweregeneratedinthewallandwatershellthaninthecavity.Thisvariancewasestimatedbysplittingupacalculationinto10batches.TheobtainedelectronenergydepositionswerethenusedtocorrecttheenergydepositionofprotonscalculatedbyPTRANinthefollowingway:

2

(Ewall,i→cavNwall,i+Ewater,i→cavNwater,i)Ecorr=Eproton+

i=1

Ecav→wallNcav Ecav→waterNcav

(11)

whereEcorristhemeanenergydepositioninthecavitycorrectedforsecondaryelectron

uenceperturbation,Eprotonthemeanenergydepositionduetoprimaryprotonsperincidentprotonassumingnosecondaryelectronperturbation,Ea→bthemeanenergyperelectrongeneratedinregionathatisdepositedinregionb,Nathenumberofelectronsgeneratedinregionaperincidentprotonandianindexoverthenumberofsectors(frontandbackofbothwallandwatershell).Aperturbationcorrectionfactorduetoelectroneffectspeisthencalculatedaspe=Ecorr/Eproton.3.Resultsanddiscussion

3.1.Simulationofmodulatedprotonbeams

Figures4(a)and4(b)showcalculateddepthdosedistributionsformodulatedprotonbeamsofdifferentincidentenergiesE0withoutandwithtakingintoaccountinelasticnuclearinteractions.Forbothdatasetstheenergydistributionofprotonsafterpenetratingthemodulatorwasbasedonthedesignofpolystyrenemodulatingwheelswith80sectorsofvaryingthickness.Thethicknessdistributionwasdeterminedinsuchawaythattheresultingmodulatedprotonbeamproducesa atdepthdosedistributioninwateriftherecentstoppingpowerdataforwaterpublishedbytheICRU(1993)areusedandinelasticnuclearinteractionsareneglected(forananalyticalmethodtocalculatethethicknessdistributionofmodulatorwheels,seethepublicationofBortfeldandSchlegel(1996)).

Asisobviousfrom gure4(a),thedepthdosedistributionsforinitialprotonenergiesof50,85,100,150,200and250MeVcalculatedwithouttakingintoaccountinelasticnuclearinteractionsarereally atoveralargedepthregionofabout70%oftheprotoncontinuous-slowing-downrangeRcsda.Asshownby gure4(b),however,thedosecandeviate

Monte Carlo study of fluence perturbation effects on cavity

74HPalmansandF

Verhaegen

Figure4.Normalizeddepthdosedistributionsformodulatedprotonbeamswithenergiesrangingfrom50MeVto250MeV(a)withoutnon-elasticnucleardosecontributionsand(b)withnon-elasticnucleardosecontributions.Themodulatorwheeldesignwasbasedonthe(Coulomb)stoppingpowersonly.

considerablyfromaconstantvalueiftheenergylossofprotonscausedbyinelasticnuclearinteractionsandtransferredtosecondarychargedparticleswhichareassumedtobelocallyabsorbed(Berger1993b)aretakenintoaccountinwater.Fora250MeVmodulatedprotonbeamthedeviationfromthedesired atdosepro leismorethan15%.Becauseofthisfact,inelasticnuclearinteractionsmustbeincludedinthedesignofprotonbeammodulators.

Themodulatorwheelsusedinthefurthersimulationsofthisworkarethereforedesignedbyalsotakingintoaccountinelasticnuclearinteractionsexceptifotherwiseindicated.TherelativecontributionsofthewheelthicknessesarechangediterativelystartingfromthemostpenetratingBraggcurve.A atdosepro http://paredwiththewheeldesignusedtocalculatethedepthdosedistributionsof gure4,therelativecontributionshadtobechangedbymorethan2%toobtain atdosepro leswithinelasticnuclearinteractionsincluded.

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams

75

Figure5.Spectralproton uencedistributionsfroma100MeVmodulatedprotonbeamatdepthsinwaterof0.3 Rcsda,0.6 Rcsda,0.9 Rcsdaand1.0 Rcsdanormalizedperincidentproton.

Figure5showsprimaryprotonenergyspectracalculatedfora100MeVmodulatedprotonbeamhavinga attotaldosepro lefrom0.25Rcsdato0.95Rcsdaatfourdepths;oneatthebeginningofthe atdoseregion,oneinthemiddle,oneneartheendandonebehindthe atdoseregion.Inthis gurewecanseethatbesidestheapproximatelyGaussianenergyspectrumfromthemonoenergeticbeam,alongtailoflower-energycontributionsduetothesuperpositionofdifferentthicknessesofthewheeloccursinthisspectrum.

Wecanremarkthatbecausetherelativecontributionfromtheselowenergiesincreasesforlargerdepths,thelinearenergytransferandmicrodosimetriclinealenergywillincreaseforthesedepthsasshownbyVerhaegenandPalmans(1997).Thereforeitcanbeexpectedthatalthoughthedosepro leis at,thebiologicalconsequencesofthisdosewillvaryoverthe atdoseregion.Thisis,forexample,shownbyPaganettiandSchmitz(1996)whostudiedthein uenceofthebeammodulationtechniqueonthevariationofrelativebiologicaleffectivenessalongtheSOBP.Ifinthefuturesuf cientknowledgebecomesavailableaboutthemicrodosimetricandbiologicaleffectsofprotonradiationonhumantissueasafunctionofenergy,thewheeldesignshouldbeimprovedinordertoobtaina atbiologicalresponseoveralargedepth.

3.2.Effectsofprimaryproton uenceperturbation

3.2.1.Effectoftheaircavityinwater.Firsttheeffectofinsertinganaircavityisevaluated.Intheory,whentheBragg–Grayprincipleholdsfortheprimaryparticles(contrarytohigh-energyphotonswhereBragg–Grayisappliedtothesecondaryelectrons),theratioofthedoseintheaircavitytothedoseinwatershouldbeequaltothereciprocalofthewater-to-airstoppingpowerratioaveragedovertheprotonspectruminthecavity.

ThedosetowaterDwcalculatedinhomogeneouswaterbothatthecavitycentreandattheeffectivemeasuringpointobtainedwithequation(4)iscomparedwiththedosetowaterDw,acderivedfromtheenergydepositioninthecylindricalaircavityforthedifferentincidentprotonenergies,depthsandcavitysizes.TheratioDw/Dw,accouldberegardedasapdisplperturbationcorrectionfactorintheformalismreferredtointheintroduction.

DwatthedepthofthecavitycentreandattheeffectivemeasuringpointisdeterminedfromthedepthdosedistributionobtainedwithPTRANinhomogeneouswaterforapencilbeam.Thisdistributioniscalculated(Berger1993a)astheaverageenergylossperunit

Monte Carlo study of fluence perturbation effects on cavity

76HPalmansandFVerhaegen

depthinMeVg 1cm2(whichis,duetothereciprocitytheorem,alsotheaverageenergylossperunitdepthonthecentralaxisofanin nitelybroadbeam).Sothedoseatacertainpointonthecentralaxisforacertain eldsizeisobtainedbydivisionofaverageenergylossperunitdepth(expressedasmassperarea)withtheareaoftheincident eldprovidedthatthebeamissuf cientlyextendedlaterallytoavoidprotonsfrombeyondthelateraledgeofthebeambeingabletoreachtheaxisbyscattering.

ToobtainthedosetowaterDw,acdetectedbythecavity,thecavitydoseismultipliedwiththewatertoairstoppingpowerratiooftheprotonspectruminthecavity.Forunmodulatedmonoenergeticbeamsthestoppingpowerratioistakenattheeffectiveenergywhichisderivedfromtheresidualrange.ThelatterrangeiscalculatedasRcsdaoftheincidentprotonsminustheeffectivedepthofthecavityascalculatedbyequation(4).Thisapproachisjusti edbythesmallenergyspreadoftheprotonsinthecavityandbythesmalldependenceofthewatertoairstoppingpowerratioonenergy.ForthemodulatedbeamsthisapproachintroduceserrorsasshownbyMedinandAndreo(1992)becausetheprotonenergyspectraarebroadenedbyspreadingouttheBraggpeak.Table1showsthestoppingpowerratioscalculatedattheeffectiveenergynexttotheratioofstoppingpowersintegratedoverthecalculatedspectraatdifferentdepthsontheSOBP,asforexampleshownin gure5.WeseethatintheperipheralareaoftheSOBPdifferencesofupto0.4%occurandinitscentredifferencesofupto0.2–0.3%.AsshownbyMedinandAndreo(1997a),thein uenceonthestoppingpowerratioofneglectingsecondaryprotonsislessthan0.1%forunmodulatedmonoenergeticprotonbeamsinthestudiedenergyrange.Thisresultalsoholdsforamodulatedbeam,asitcanberegardedasasuperpositionofunmodulatedbeams.

Table1.Water-to-airstoppingpowerratiosatdifferentdepthsdinwaterformodulatedprotonbeamsofinitialenergyEandresidualrangeRresidualatdepthdcorrespondingtoaneffectiveenergyEeff:(S/ρ)wa(Eeff)iscalculateddirectlyfromthemassstoppingpowersforwaterand

wiscalculatedfromthe¯airatenergyEeffusingthetablespublishedbyICRU(1993);(S/ρ)a

protonspectrumatdepthdinwateralsousingtheICRUtables.E(MeV)858585100100100200200200

Depth(cm)1.753.455.202.324.656.987.7115.523.4

Rresidual(cm)4.032.330.585.393.070.7418.210.52.60

Eeff(MeV)69.551.323.781.859.827.2163.0119.054.4

w

Sa

(Eeff)

w

¯Sa

1.1321.1331.1361.1321.1331.1351.1301.1311.1331.1351.1361.1401.1341.1351.1391.1321.1331.136

Table2showsthecalculatedDw/Dw,acratiosforthedifferentincidentprotonenergiesE,depthsofthecavitycentredandcavitydiameters,besidestheeffectivemeasuringdepthzeffandtheeffectiveenergyEeff.Thesixthandseventhcolumnsoftable2showtheratiosDw(d)/Dw,acandDw(zeff)/Dw,acrespectivelyifDwiscalculatedatthedepthofthecavitycentreoratthedepthoftheeffectivemeasuringpoint,andonlyenergydepositedinCoulombinteractionsisincludedinDwandDw,ac.

TheeighthcolumnshowsDw(zeff)/Dw,acwhenenergydepositionsinCoulombinteractionsandinelasticnuclearinteractionsaretakenintoaccount.Thenextcolumnshowsthestatisticaluncertaintiesofthevaluesincolumn6,7and8with5×106histories

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams77

Table2.RatioDw/Dw,acofabsorbeddosetowaterDwinhomogeneouswaterandabsorbeddosetowaterDw,acforacylindricalaircavityasafunctionofincidentprotonenergyE,cavitydepthdandcavityradius.Incolumn6and7onlyenergydepositioninCoulombinteractionsisconsideredwithDwcalculatedatdepthdofthecavitycentreandattheanalyticallycalculatedzeffrespectively.Incolumn8energydepositionininelasticnuclearinteractionsisalsoincluded.Column9givesthestatisticaluncertaintyoftheabsorbeddoseratios.Column10showsDw(zeff)/Dw,acwhenmultiplescatteringisturnedoffinthecalculationofDw,ac.AlsoshownarethedepthzeffoftheeffectivemeasuringpointandtheeffectiveenergyEeff.

1

Energy,E

(MeV)70701001002002007070100100200200

2

Depth,d(cm)1.002.041.003.862.0013.01.002.041.003.862.0013.0

3

Cavityradius(cm)0.250.250.250.250.250.250.500.500.500.500.500.50

4zeff(cm)0.7881.8280.7883.6471.78812.770.5761.6160.5763.4351.57612.56

5Eeff(MeV)62.150.394.169.9192.0136.064.352.995.771.9193.0137.0

6

Dw(d)w,ac

7

Dw(zeff)w,ac

8

Dw(zeff)w,ac

910

Dw(zeff)w,ac

(C)(C)(C+N)0.9720.9760.9590.9700.9190.9420.9720.9750.9600.9680.9200.942

SD0.0010.0010.0010.0010.0010.0020.0010.0010.0010.0010.0010.002

(noscattering)0.9970.9970.9970.9960.9990.9990.9990.9971.0001.0001.0001.000

Unmodulatedbeams

1.0211.0331.0071.0160.9991.0001.0471.0721.0181.0351.0021.005

0.9940.9920.9950.9960.9970.9960.9950.9920.9970.9940.9980.996

Modulatedbeams8510020085100200

3.374.5015.13.374.5015.1

0.250.250.250.500.500.50

3.164.2914.92.954.0814.7

54.763.5122.057.165.7124.0

0.9981.0000.9980.9960.9971.002

1.0010.9990.9990.9980.9981.004

0.9840.9840.9630.9820.9800.967

0.0020.0020.0030.0010.0020.002

1.0011.0021.0000.9980.9991.003

fortheunmodulatedbeamsand107historiesforthemodulatedbeams.ThelastcolumnshowsagainDw/Dw,acwhenmultiplescatteringisturnedoffinthecavitydosecalculationswithastandarddeviationthatwaslessthan0.1%forallsimulations.

Startingthediscussionfortheunmodulatedbeams,itisclearfromcolumns6and7thatforthe70MeVand100MeVbeamsDw(d)issigni cantlyhigherthanDw,ac,whereasDw(zeff)agreesmorecloselywithDw,ac.Forthe200MeVbeam,differencesaresmaller,butgenerallyDw,acagreesbetterwithDw(zeff)thanwithDw(d).NeglectinginelasticnuclearscatteringandcomparingthevaluesofDw(zeff)/Dw,acforunmodulatedprotonbeamswithandwithouttakingintoaccountprotonmultiplescattering(columns7and10),weseethatfortheunscatteredbeamtheagreementofDwandDw,acisformostcasesbetterthanforthecompletesimulationwhereperturbationsadditionaltothedisplacementofthemeasuringpointrangingfrom0.2%to0.8%areobtained.Apartoftheseperturbationscanbeattributedtoscattering.Theobservationthatinallcasesthedoseinthecavityislargerthanthedoseinwaterattheeffectivepointofmeasurementcanbeexplainedbecauseparticlesthatundergoanimportantnumberofscatteringinteractionstravelalongerdistancebeforetheyenterthecavity,thushavingalowerenergyforwhichthestoppingpowerishigher.ThesmalldeviationsfromunityforDw(zeff)/Dw,acwith

Monte Carlo study of fluence perturbation effects on cavity

78HPalmansandFVerhaegen

scatteringturnedoffindicatethattheassumptionoflocallineardependenceofDwonzandtheneglectingofprotonenergydegradationovertheaircavityinthesemianalyticalmodel(seeappendix)isnotcompletelyjusti ed.Neglectingenergydegradationunderestimatesthedoseattheeffectivemeasuringpointwhichisconsistentwiththeresultsofcolumn10intable2.

Whencomparingcolumns7and8animportantdifferenceshowsupduetotheinclusionofenergydepositionfrominelasticnuclearinteractions.ThereasonisthattheratioofthestoppingpowersinwaterandairisnotequaltotheratiooftotalinelasticnuclearcrosssectionswhichweadoptedfromJanni(1982).Soitcannotbejusti edtoscalethecontributionofinelasticnuclearenergydepositionswiththestoppingpowerratio.Thiscontributioninaircanberescaledtowaterseparatelywiththeratiosoftotalinelasticnuclearcrosssectionsasfollows:

w σ wS

+Dair(N)(12)Dw,ac=Dair(C)

ρaAawithDair(C)thedosedepositedinCoulombinteractionsintheaircavity,(S/ρ)wathewater

toairmassstoppingpowerratio,Dair(N)thedosedepositedininelasticnuclearinteractionsintheaircavityand(σ/A)watheratiooftotalinelasticnuclearcrosssectionspernucleoninwaterandair.Applyingequation(12)theDw/Dw,acratioscalculatedbytakingintoaccountinelasticnuclearinteractionsbecomeexactlythesameasthoseofcolumn7.Thisindicatesthattheseparatescalingofthiscontribution,whichincreaseswithincreasingprotonenergies,doesnotin uencetheperturbationeffectsstudied.Nevertheless,itshouldbeconsideredforpurposesofaccurateabsoluteionizationchamberdosimetry.Furthermore,itshouldbeclearthattheeffectweshowforinelasticnuclearcontributionsisprobablyoverestimatedasonlyafractionofthisinelasticnuclearenergytransfergoestosecondarychargedparticlesandcontributestothelocallydepositeddose.Inwater,asshownbySeltzer(1993),animportantpartistransferredtolong-rangeneutronsthatdonotcontributetothelocaldose.Itisnotunlikelythatforair,consistingmainlyofnitrogen,thesituationissigni cantlydifferent.AnotherremarkisthatthetotalinelasticnuclearcrosssectionsfornitrogenareinterpolatedfromthedatagivenbyJanni(1982)assumingasmoothdependenceofthistotalcrosssectiononatomicnumber.Further,thechargedsecondaryparticlesoriginatingfrominelasticnuclearinteractions,especiallytheimportantfractionofsecondaryprotons,canalsobetransportedfromthecavitytothewallandviceversa,therebypossiblycompensatingtheincreasedenergytransferredtoaircomparedtowater.Theeffectsarereducedto50%to70%(equaltotheenergyfractiontransferredtochargedsecondaries(Seltzer1993))if(i)theinterpolationprocedureconcerningthetotalcrosssectionsiscorrect,(ii)theratioofenergytransferredtochargedandunchargedparticlesininelasticnuclearreactionsiscomparableforairandwaterand(iii)theassumptionisapplicablethatthetotalenergytransferredtochargedsecondariesduetoinelasticnuclearinteractionsisdepositedlocally.Recentlyanumberofcomparisonsofionizationchamberdosimetryandwatercalorimetryinbothmodulatedandunmodulatedclinicalprotonbeamsbetween85MeVand250MeVhavebeenperformed(Schulzetal1992,VatnitskyandSiebers1994,Vatnitskyetal1996,Palmansetal1996).Theseexperimentsshowthationizationchamberdosimetryisconsistentwithwatercalorimetrywithin2%overthecompleteclinicalenergyrangewhenapplyingthe(Wair)precommendedbytheAAPMprotocol(AAPM1986).Thisprovesthattheactualeffectsofinelasticnuclearenergydepositionandespeciallytheirdependenceonprotonenergymustbelessthanshownintable2.However,theycouldalsobeimportantinthediscussionofthe(Wair)pvaluewhenconclusionsregardingitwouldbedrawnfromcomparisonsbetweencalorimetrymeasurementsandionizationchambermeasurements.

Monte Carlo study of fluence perturbation effects on cavity

Cavitydoseresponseinclinicalprotonbeams79

Formodulatedbeams,inelasticnuclearinteractionswereneglectedandthedoseratioswerecalculatedwithmodulatorwheelsgivinga atdosepro leforonlyCoulombinteractions,i.e.thoseusedfor gure4.Dw(d)/Dw,ac,Dw(zeff)/Dw,acandDw(zeff)/Dw,acwithscatteringturnedoffareallclosetounityandthesmalldeviationsfromunitycouldbeattributedtolocal uctuations(‘ripples’)withamagnitudeofsometenthsofapercentonthedepthdosedistributionduetothesuperpositionofindividualBraggcurvesintheSOBPregion.ForDw(zeff)/Dw,acwithinelasticnuclearcontributionsincluded,othermodulatorwheelsgivinga atdosepro leforthetotalenergydepositionweresimulatedasindicatedinsection3.1.Regardingthefractionofenergydepositedininelasticnuclearinteractionssimilar,butsmaller,effectsasforunmodulatedbeamsareobserved.

Table3.Similartotable2butforsphericalcavitiesandonlyforunmodulatedmonoenergeticbeams.

1

Energy,E

(MeV)70701001002002007070100100200200

2

Depth,d(cm)1.002.041.003.862.0013.01.002.041.003.862.0013.0

3

Cavityradius(cm)0.250.250.250.250.250.250.500.500.500.500.500.50

4zeff(cm)0.8131.8530.8133.6721.81312.790.6251.6650.6253.4841.62512.61

5Eeff(MeV)61.950.093.969.719213563.852.395.471.5193136

6

D(d)w,ac

7

Dw(z)w,ac

8

Dw(z)w,ac

910

Dw(z)w,ac

(C)(C)(C+N)0.9740.9800.9610.9730.9210.9460.9730.9780.9590.9710.9200.947

SD0.0010.0010.0010.0010.0010.0010.0020.0010.0010.0010.0030.002

(noscattering)0.9980.9970.9990.9991.0011.0010.9980.9960.9990.9991.0011.001

Unmodulatedbeams

1.0201.0331.0081.0161.0001.0041.0421.0661.0161.0321.0011.009

0.9960.9970.9980.9980.9981.0000.9960.9950.9950.9970.9991.002

Table3showsthesamedataasintable2calculatedforsphericalcavitiesfortheunmodulatedbeams.DuetotheshapeofthecavitytheratiosDw/Dw,acareslightlydifferentfromthoseforthecylindricalcavities,butthetendenciesdescribedinthepreviousparagraphscanagainbeobserved.

3.2.2.Effectofreplacingwaterwithwall.Figure6showscalculatedratiosofthedoseinthecentralaircavitywithandwithoutwallforamonoenergeticunmodulated100MeVprotonbeamatadepthof3.859cm(=0.5 Rcsda)fordifferentwallmaterialsasafunctionofwallthicknessforacylindricalcavitywithinnerradiusof0.25cm.Wecanobservethatinthiscasearelativelylargedoseincreaseiscausedbyexchangingwaterwithwallmaterialaroundthecavity(about0.5%permmwallthicknessforgraphite).Thiseffectcanbeexplainedbythedecreaseofeffectivewaterdepthwithincreasingwallthicknessasisshownanalyticallyintheappendixanddiscussedinthefollowingparagraphs.

Table4givesanoverviewofourresultswithrespecttothepercentagecavitydosechangepermmwallthicknessforfourdifferentwallmaterialsasafunctionofprotonenergy,measuringdepthandcavitydiameter.Theywerederivedbylinear ttingofdatacorrespondingtothoseshownin gure6havingstatisticaluncertaintiessmallerthan0.2%foreachwallthickness.Thenumberofhistoriesrequiredvariedfrom7×105forthe

Monte Carlo study of fluence perturbation effects on cavity.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)