手机版

双曲线的标准方程课件_新人教版选修1-1

发布时间:2024-11-10   来源:未知    
字号:

首 页 上 页 下 页 小 结 结 束

第一课时

1. 椭圆的定义平面内与两定点F1、F2的距离的 和 等于常数动 画

2a ( 2a>|F1F2|>0) 的点的轨迹.

Y

M x, y

首 页 上 页 下 页 小 结 结 束

F1 c, 0

O

F2 c, 0 X

2. 引入问题: 平面内与两定点F1、F2的距离的 差 等于常数 的点的轨迹是什么呢?

定义:平面内与两个定点F1,F2的距离的差 的绝对值 等于常数 2a ( 小于︱F1F2︱且大于0 的点的轨迹 叫做双曲线。① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距.M

动 画首 页 上 页 下 页 小 结 结 束

注意

1 、2a= |F1F2 |F1

以F1、F2为端点两条射线 2、2a> |F1F2 |无轨迹

o

F

2

思考: 1)当2a=|F1F2|时,动点M的轨迹是什么? 动点M的轨迹是分别以点F1、F2为端点, 方向指向F1F2外侧的两条射线. 2)当2a>|F1F2|时,动点M的轨迹是什么? 动点M的轨迹不存在. 3)若常数2a=0,轨迹是什么? 线段F1F2的垂直平分线首 页 上 页 下 页 小 结 结 束

(4)定义中绝对值去掉有什么变化?

首 页 上 页 下 页 小 结 结 束

双曲线在生活中 ☆.☆

首 页 上 页 下 页 小 结 结 束

首 页 上 页 下 页 小 结 结 束

1. 建系. 以F1,F2所在的直线为X轴, 线段F1F2的中点为原点建立直角坐标系 设M(x , y),双曲线的焦 2.设点 .首 页 上 页 下 页 小 结 结 束

yM

距为2c(c>0),F1(-c,0),F2(c,0)

F1

o

F2

x

常数=2a 03.列式.

MF1 MF2 2a(x-c)2 + y2 | = 2a

即 | (x+c)2 + y2 4.化简.

( x c ) y ( x c ) y 2 a2 2 2 2

(x c) y 2a 2 2 2首 页 上 页 下 页 小 结 结 束

( x c) y2

2

2

cx a a ( x c) y2 22 2 2 2 2 2

2

(c a ) x a y a (c a )2 2

x 2 a

2

b 2 1(a 0, b 0)

y2

c a b2 2

2

此即为 焦点在x 轴上的 双曲线 的标准 方程

双曲线的标准方程yM F1首 页 上 页 下 页 小 结 结 束

M

y

F2xO

O

x

F2

F12 2

x y 2 1(a 0, b 0) 2 a b2 2

2

2

y x 2 1 (a 0, b 0) 2 a b2

c a b

问题:如何判断双曲线的焦点在哪个轴上?

3.两种标准方程的比较

x2 y2 2 1(a 0, b 0) 2 a b① 方程用“-”号连接。 ② 分母是 a首 页 上 页 下 页 小 结 结 束

y2 x2 2 1(a 0, b 0) 2 a b

2

, b2 , a 0, b 0 但 a , b。

大小不定。

c 2 a 2 b22

④如果 x 的系数是正的,则焦点在 焦点在 y轴上。

x轴上;如果 y 2的系数是正的,则

判断下列方程是否表示双曲线?若是,求出

a, b, c及焦点坐标。

x2 y2 1 1 4 2首 页 上 页 下 页 小 结 结 束

x2 y2 2 1 2 2 x2 y2 4 1(m 0, n 0) m n

x2 y2 3 1 4 2答案

:

1 a 2, b 2, c 6 ( 6,0).( 6,0) 2 a 2, b 2, c 2 ( 2,0).(2,0) 3 a 2, b 2, c 6 (0, 6 ).(0, 6 ) 4 a m, b n, c m n ( m n ,0).( m n ,0)

动 画

x2 y2 1上 例1、 已知 点P为双曲线 16 9

一点 , (1)a=

4

,b=

3

,c=

首 页 上 页 下 页 小 结 结 束

5

;

(2)若点P到一个焦点的距离为 9 ,则它 到另一个焦点的距离为 。 1或17

例 2、已知两定点 F1 ( 5,0) , F2 (5,0) ,动点 P满足 PF1 PF2 6 , 求动点 P 的轨迹方程 .解:∵ F1F2 10 > PF1 PF2 6首 页 上 页 下 页 小 结 结 束

∴ 由双曲线的定义可知,点 P 的轨迹是焦点在

X 轴上的一条双曲线。x y ∴设标准方程为: 2 2 1 (a>0,b>0). a b2 2

2a 6, 2c 10 a 3, c 5, b 16 .2

x2 y2 1. 所以点 P 的轨迹方程为 9 16

练习:1、 双曲线 a=首 页 上 页 下 页 小 结 结 束

y x 1 中 4 5

2

2

2

,b=

5

焦点坐标

0, 3

,c= 。

3

;

练习:2、求适合下列条件的双曲线的标准方程。 (1)a=4,c=5,焦点在y轴上 (2)焦点为(-5,0),(5,0),且b=4首 页 上 页 下 页 小 结 结 束

(3)a+c=7,c-a=1y x 1 16 92 22 2

x2 y2 1 16 92 2

y x x y 1 1或 9 7 9 7

双曲线的标准方程课件_新人教版选修1-1.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)