仪器分析第四版答案完整版[1]
第二章 习题答案1.简要说明气相色谱分析的基本原理。 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实 现分离。组分在固定相与流动相之间不断进行溶解、挥发 (气液色谱),或吸附、解吸过程而相互分离,然后进入检 测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记录 系统. 气相色谱仪具有一个让载气连续运行 管路密闭的气路系 统. 进样系统包括进样装置和气化室.其作用是将液体或固体试 样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中.
仪器分析第四版答案完整版[1]
3.当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动 相流速增加,(4)相比减少,是否会引起分配系数的改变?为 什么? 答:固定相改变会引起分配系数的改变,因为分配系数只于组 分的性质及固定相与流动相的性质有关.
所以(1)柱长缩短不会引起分配系数改变(2)固定相改变会引起分配系数改变 (3)流动相流速增加不会引起分配系数改变 (4)相比减少不会引起分配系数改变 4.当下列参数改变时: (1)柱长增加,(2)固定相量增加,(3)流动 相流速减小,(4)相比增大,是否会引起分配比的变化?为什么?
答: k=K/b,而b=VM/VS ,分配比除了与组分,两相的性质,柱 温,柱压有关外,还与相比有关,而与流动相流速,柱长无关.故:(1)不变化,(2)增加,(3)不改变,(4)减小
仪器分析第四版答案完整版[1]
5.试以塔板高度H做指标,讨论气相色谱操作条件的选择.解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑 流速的影响,选择最佳载气流速.P13-24。 (1)选择流动相最佳流速。 (2)当流速较小时,可以选择相对分子质量较大的载气(如 N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气 (如H2,He),同时还应该考虑载气对不同检测器的适应性。 (3)柱温不能高于固定液的最高使用温度,以免引起固定液的 挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽 可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。 (4)固定液用量:担体表面积越大,固定液用量可以越高,允 许的进样量也越多,但为了改善液相传质,应使固定液膜薄一 些。 (5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度 要求均匀、细小(但不宜过小以免使传质阻力过大) (6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体 试样0.1~10mL. (7)气化温度:气化温度要高于柱温30-70℃。
仪器分析第四版答案完整版[1]
6.试述速率方程中A, B, C三项的物理意义. H-u曲线 有何用途?曲线的形状主要受那些因素的影响?
解:参见教材P14-16A
称为涡流扩散项 , B 为分子扩散项, C 为传质阻力项。 下面分别讨论各项的意义: (1) 涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动 方向,使试样组分在气相中形成类似“涡流”的流动,因而 引起色谱的扩张。由于 A=2λdp ,表明 A 与填充物的平均颗 粒直径 dp 的大小和填充的不均匀性 λ 有关,而与载气性质、 线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体, 并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。
仪器分析第四版答案完整版[1]
(2) 分子扩散项 B/u 由于试样组分被载气带入色谱柱后,是以“塞子”的 形式存在于柱的很小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓 差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于 载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质 量较大的载气 ( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但 反比于柱压。弯曲因子 r 为与填充物有关的因素。 (3) 传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两项。 所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中 试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行 缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱:液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发 生质量交换,达到分配平衡,然后以返回气液界面 的传质过程。这个过 程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口 运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略 。
仪器分析第四版答案完整版[1]
由上述讨论可见,范弟姆特方程式对于分离条件的选择具有指导意义。 它可以说明 ,填充均匀程度、担体粒度、载气种类、载气流速、柱温、 固定相液膜厚度等对柱效、峰扩张的影响。 用在不同流速下的塔板高度 H 对流速 u 作图,得 H-u 曲线图。在曲线的 最低点,塔板高度 H 最小 ( H 最小 ) 。此时柱效最高。该点所对应的流速 即为最佳流速 u 最佳 ,即 H 最小 可由速率方程微分求得:
当流速较小时,分子扩散 (B 项 ) 就成为色谱峰扩张的主要因素,此时应采用相对分 子质量较大的载气 (N2 , Ar ) ,使组分在载气中有较小 的扩散系数。而当流速较大 时,传质项 (C 项 ) 为控制因素,宜采用相对分子质量较小
的载气 (H2 ,He ) ,此时组 分在载气中有较大的扩散系数,可减小气相传质阻力,提高柱效。
仪器分析第四版答案完整版[1]
7. 当下述参数改变时: (1)增大分配比,(2) 流动相速度 增加, (3)减小相比, (4) 提高柱温,是否会使色谱峰变 窄?为什么?答:(1)保留时间延长,峰形变宽(2)保留时间缩短,峰形变窄 (3)保留时间延长,峰形变宽
(4)保留时间缩短,峰形变窄
仪器分析第四版答案完整版[1]
8.为什么可用分离度R作为色谱柱的总分离效能指标?
答:
1 -1 k R= 1 = n( )( ) 4 1+ k 1 - Y2 ) 2 (Y
t R ( 2) - t R (1)
分离度同时体现了选择性与柱效能,即热力学因素和 动力学因素,将实现分离的可能性与现实性结合了起 来.
仪器分析第四版答案完整版[1]
9.能否根据理论塔板数来判断分离的可能性?为什么? 答: 不能,有效塔板数仅表示柱效能的高低,柱分离 能力发挥程度的标志,而分离的可能性取决于组 分在固定相和流动相之间分配系数的差异.
仪器分析第四版答案完整版[1]
10.试述色谱分离基本方程式的含义,它对色谱分离有什 么指导意义?答:色谱分离基本方程式如下:
1 -1 k R= n( )( ) 4 1+ k它表明分离度随体系的热力学性质( 和k)的变化而变化,同时 与色谱柱条件(n改变)有关>(1)当体系的热力学性质一定时(即组分和两相性质确定),分 离度与n的平方根成正比,对于选择柱长有一定的指导意义,增 加柱长可改进分离度,但过分增加柱长会显著增长保留时间, 引起色谱峰扩张.同时选择性能优良的色谱柱并对色谱条件进 行优化也可以增加n,提高分离度.
仪器分析第四版答案完整版[1]
(2)方程式说明,k值增大也对分离有利,但k值太大会延长分离时间,增加分析 成本.(3)提高柱选择性 ,可以提高分离度,分离效果越好,因此可以通过选择合适的 固定相,增大不同组分的分配系数差异,从而实现分离.
11.对担体和固定液的要求分别是什么?答:对担体的要求; (1)表面化学惰性,即表面没有吸附性或吸附性很弱,更不能与被测物质起化学 反应. (2)多孔性,即表面积大,使固定液与试样的接触面积较大.
(3)热稳定性高,有一定的机械强度,不易破碎.(4)对担体粒度的要求,要均匀、细小,从而有利于提高柱效。但粒度过小, 会使柱压降低,对操作不利。一般选择40-60目,60-80目及80-100目等。
仪器分析第四版答案完整版[1]
对固定液的要求: (1)挥发性小,在操作条件下有较低的蒸气压,以避免流失 (2)热稳定性好,在操作条件下不发生分解,同时在操作温度下为 液体. (3)对试样各组分有适当的溶解能力,否则,样品容易被载气带走 而起不到分配作用. (4)具有较高的选择性,即对沸点相同或相近的不同物质有尽可 能高的分离能力. (5)化学稳定性好,不与被测物质起化学反应. 担体的表面积越大,固定液的含量可以越高.
仪器分析第四版答案完整版[1]
12. 试比较红色担体与白色担体的性能,何谓硅烷化担体?它有何优点?答:
(见P27)
仪器分析第四版答案完整版[1]
仪器分析第四版答案完整版[1]
仪器分析第四版答案完整版[1]
13.试
述“相似相溶”原理应用于固定液选择的合理性及其存在 的问题。解:样品混合物能否在色谱上实现分离,主要取决于组分与两相亲和力的差别, 及固定液的性质。组分与固定液性质越相近,分子间相互作用力越强。根据此规 律: (1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸点次序先后流 出色谱柱,沸点低的先出峰,沸点高的后出峰。 (2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离, 极性小的先流出色谱柱,极性大的后流出色谱柱。 (3)分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰, 极性组分(或易被极化的组分)后出峰。 (4)对于能形成氢键的试样、如醉、酚、胺和水等的分离。一般选择极性的或是 氢键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后 流出,不易形成氢键的先流出,最易形成氢键的最后流出。 (5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。 以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性。事实上在 色谱柱中的作用是较复杂的,因此固定液酌选择应主要靠实践。