全日制普通本科生毕业设计
双卧轴混凝土搅拌机机械部分设计
DESIGN OF DOUBLE HORIZONTAL CONCRETE MIXER’S
MECHANICAL PARTS
学生姓名: 学 号: 年级专业及班级: 指导老师及职称:
目 录
摘要 1 关键词 1 1前言 2 2总述 2 2.1 搅拌的作用 2 2.1.1 混凝土的组成 2 2.1.2 搅拌的任务 3 2.1.3合理的搅拌机理 3 2.2 混凝土搅拌机的类型 4 2.3 国内外混凝土搅拌机的发展状况 5 3 总体设计方案确定及动力元件选择 5 3.1 总体设计 5 3.2 混凝土搅拌机的工作原理 9 3.3 电动机的选型 6 3.4 减速器的选型 6 3.5 联轴器的选择与计算 7 4 搅拌系统的设计与计算 8 4.1 总体方案的拟定 8 4.2 方案的分析和确定 9 4.3叶片主要参数的设计 11 4.4 主轴转速的确定 12 4.5 螺旋叶片的加工 13 4.5.1 叶片螺旋面的成形 14
4.5.2坯料形状的选择 14 4.5.3 整圆坯料尺寸的确定 14 4.5.4 压模主要尺寸的确定 14 4.6 螺旋叶片的校核 16 5筒体和搅拌轴的简要设计 21 5.1 筒体的主要参数 21 5.2 搅拌轴的主要参数 21 6轴的设计与计算 22 6.1左轴的校核 22 6.1.1 初步估算轴的直径 22 6.1.2 轴的结构设计 22 6.1.3 轴承的校核 23 6.1.4轴的校核 25 6.2 键的校核 26 6.3 销轴的校核 26 6.4 右轴的校核 27 6.4.1初步估算轴的直径 27 6.4.2 轴的结构设计 27 6.4.3 轴的强度校核 28 6.4.4 轴承的校核 29 6.5 搅拌轴套筒的校核 30 7结论 31 参考文献 31 致谢 33
双卧轴混凝土搅拌机机械部分设计
学 生:邓 彪 指导老师:吴 彬
(湖南农业大学东方科技学院,长沙 410128)
摘 要:混凝土搅拌机是施工机械装备中的重要设备,其产品质量和生产效率直接影响着建筑施工
质量和建筑施工进度。强制式搅拌机是应用最普遍、使用率最高的混凝土搅拌机。双卧轴搅拌机是新型搅拌机型,因其搅拌质量好,生产率高,被广泛用于各种搅拌场合。本毕业设计从搅拌的目的和机理出发。工作时,物料在叶片推动下沿螺旋面移动,由于两轴的旋转方向相反,两轴间的物料产生挤压、翻滚和揉搓,以达到搅拌混合效果。通过对卧轴式搅拌机的叶片结构和曲面形状进行合理的布置和设计,混凝土的质量和生产效率会有很大的提高。
关键词:混凝土搅拌机;双卧轴; 叶片
Design of Double Horizontal Concrete Mixer’s Mechanical Parts
Student:Deng Biao Tutor:Wu Bin
(College of 0rient Science&technology , Hunan Agricultural University, Changsha 410128, China)
Abstract:Concrete mixer is the key device of construction machinery and equipment. It has product
quality and production efficiency, which directly impacts on the construction quality and progress of construction. Compulsory mixer is the most common and the highest utilization rate of concrete mixers.Double horizontal shaft mixer is a new-style mixer, which is widely used in many conditions because of the high mixing quality and productivity.This paper begins with the mechanism and purpose of mixing. The materials leaves along the spiral of mobile on the work. Because of the two axis of rotation opposite direction, the materials between the two axis produces extrusion rolling and scrubbing, in order to meet the stirring mixed effect. It has been proved in the long-term production, through the horizontal Coaxial mixer surface of the leaf structure and shape of a reasonable layout and design, concrete’s quality and production efficiency will be greatly improved.
Key words: concrete mixer; double horizontal ;shaft
1 前言
近年来随着我国城市基础建设、房地产开发业的迅猛发展,推动了混凝土生产产量的迅速提高。混凝土生产是改变传统的现场分散搅拌混凝土的生产方式,实现建筑工业化的一项重要改革。混凝土的商品化生产因其生产的高度专业化和集中化等特点大大提高了混凝土工程质量,节约原材料,加快,提高劳动生产率,减轻劳动强度,同时也因其节省施工用地,改善劳动条件,减少环境污染而使人类受益。
目前,在国内外的煤炭、建材、化工等行业广泛地使用着各种各样的用来搅拌煤、混凝土及其他原料的搅拌机。从其运动方式及其主要结构上来看,它们可分为两大类型:一种形式为单运动的轴式传动轴上(有单轴和双轴)安装各式各样的搅拌叶片(有长锥形、螺旋形等),并利用叶片来搅拌物料;而另一类则是通过钢齿轮传动带动某一形状的筒体(有圆锥体、圆柱体等)的自身旋转而使物料产生搅拌效果。由于这些搅拌输送机全部都是利用单运动方式,因而普遍存在拌和物料不充分,搅拌效果不太理想;另外,其噪音也较大,特别是在煤炭行业的工业型煤等新工艺上使用的搅拌输送机,根本满足不了其工艺设计要求而严重制约了其新技术新工艺的推广使用,因而急需一种结构新颖、效果明显的全新机型的搅拌机来逐步代替旧式搅拌机,并且也可广泛地使用于其他行业。
然而,在实际生活中,我们看到的大部分混凝土搅拌机,都是起搅拌作用,然后通过车载,人力等方式运送到需要的地方。搅拌和输送分开进行,既加强了工人的劳动强度,降低了劳动效率,造成大量原材料的浪费,又污染了环境。还有些设备是搅拌和输送是分开的,及用一种机器完成混凝土的搅拌作用,而用专门的机器完成混凝土的输送。
连续式双卧轴搅拌机是随着混凝土施工工艺的改进而逐渐发展起来的新机型。近年来,搅拌机逐渐向大容量和高生产率方向发展。通过长期的研究和探索发现比较完善的搅拌输送过程。为使混凝土的搅拌和输送变得相对容易,一般采用卧式双轴强制式连续混凝土搅拌机。通过对搅拌轴的叶片的设计和组合,使物料完成搅拌和输送的工作。本机在封闭的环境中,实现对物料的搅拌和输送,搅拌及输送效果良好,对环境污染少,能够改善施工现场施工条件,保障施工人员身心健康,降低工人的施工强度,提高工作效率,减少施工中对环境的破坏。
2 总述
2.1搅拌的作用
2.1.1混凝土的组成
混凝土作为当今最大宗的建筑材料,广泛地用于工业、农业、交通、国防、水利、市
政和民用等基本建设工程中,在国民经济中占有重要地位。一般混凝土指水泥混凝土而言,它是由水泥和砂、石集料,加水按规定的配合比,经过搅拌、浇注和凝结而成的一种人造石材。其中,水泥和水起胶凝作用,砂、石起骨架填充作用,水泥浆包裹在砂的表面,并填充于砂的空隙成为砂浆,砂浆又包裹在石子的表面,并填充石子的空隙。当水泥浆硬化后,就将砂、石集料颗粒牢固地粘结成一个整体,使混凝土具有一定的强度和其他许多重要性能。
2.1.2搅拌的任务
强度是混凝土最主要的力学性能,混凝土强度主要取决于混合料间的界面结构。 一般认为混凝土搅拌的主要任务是;
(l)组分均匀分布,达到宏观及微观上的匀质;
(2)破坏水泥粒子团聚现象,使其各颗粒表丽被水浸润,促使弥散现象的发展; (3)破坏水泥粒子表面的初始水化物薄膜包裹层,促进水泥颗粒与其他物料 颗粒的结合,形成理想的水化生成物;
(4)由于集料表面常覆盖一薄层灰尘及粘土,有碍界面结合层的形成,故应使物料颗粒间多次碰撞和互相摩擦,以减少灰尘薄膜的影响; 2.1.3合理的搅拌机理
由以上分析可以给合理的搅拌机理一个解释:应尽可能使处在搅拌过程中的混合料各组分的运动轨迹在相对集中区域内互相交错穿插,在整个混合料体积中最大限度地产生相互摩擦,尽可能提高各组分参与运动的次数和运动轨迹的交叉频率,为混合料实现宏观和微观匀质性创造最有利的条件。因此,为了获得搅拌均匀的混凝土,混凝土搅拌机必须具备下列条件:
(l)能对混凝土各种组分均匀搅拌,并使水泥浆或沥青均匀包裹骨料表面; (2)能将搅拌后的混凝土均匀的卸出; (3)搅拌和出料的时间短; (4)占地面积小;
(5)功率消耗小,符合环保要求。
而影响混凝土搅拌质量的与搅拌机有关的主要因素有:
(1)混凝土搅拌机的结构形式和它的搅拌速度; (2)搅拌叶片和衬板的磨损状况; (3)各种混合材料的加料顺序。 (4)搅拌时间。
2.2混凝土搅拌机的类型
目前生产的搅拌机有两种形式,一是独立使用的搅拌单机;另一是搅拌楼(站)的配套主机。由于使用要求有所差异,两种形式的搅拌机的配置略有不同(搅拌单机要比配套主机多上料和配水等机构),但二者的主体机构是一致的。为了满足不同混凝土的搅拌要求,已发展了多种机型,各机型在结构和性能上各具特色,可从不同角度进行分类。就其原理而言,基本可分为自落式和强制式两大类。
表1 混凝土搅拌机分类
Table 1 The classification of concrete mixer
分类方式 形式
作业方式 周期式 连续式
搅拌原理 自落式 强制式
安装方式 固定式 移动式
出料方式 倾翻式 非倾翻式
搅拌筒外形 梨形、锥形、鼓形、盘形、槽形、其他形
自落式搅拌机是依据物料的自落原理进行搅拌。工作时利用拌筒内壁固定的叶片对筒内物料进行分割和提升,物料则靠自身重力洒落、冲击,从而使各部分物料的相互位置不断进行重新分布而获得均匀搅拌。这种机型结构简单、功率消耗和叶片磨损均较小,但其搅拌强度不够剧烈,搅拌质量难以保证,生产效率低,只适用于搅拌普通塑性混凝土,对粗骨料粒径要求不严格,广泛地应用在中小型建筑工地。常用的这类搅拌机有,鼓式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等。其中的鼓式搅拌机由于技术性能落后,已于1987年列为淘汰产品。
强制式搅拌机是在自落式搅拌机之后,随着干硬性混凝土的发展而逐渐发展起来的。与自落式搅拌机不同,它不是通过重力作用进行搅拌,而是借助旋转的叶片对物料进行剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到均匀搅拌。与自落式搅拌机相比,搅拌作用强烈,搅拌质量好,生产率高,但磨损大、功耗大,而且对骨料粒径有较严格的限制,适用于搅拌干硬性混凝土和轻骨料混凝土,多用于施工现场的混凝土搅拌站和混凝土预拌工厂的搅拌楼。常见的这类搅拌机有,立轴涡桨搅拌机、立轴行星搅拌机、单卧轴搅拌机和双卧轴搅拌机等。
2.3国内外混凝土搅拌机的发展状况
在搅拌机出现的时期,是以自落式搅拌的形式出现。随着对混凝土要求的不断增多,
出现了强制式搅拌机。强制式搅拌机又可分为立轴式和卧轴式两类。国内几乎都是这两种形式的搅拌机。
立轴式搅拌机,又称涡浆式强制搅拌机,这种搅拌机的形式是在固定放置的圆盘中央,
装有一个由减速机驱动的转子臂架,在臂架上装有搅拌叶片和内外壁铲刮叶片,依靠各组搅拌叶片不同的安装位置和安装角度便能对在圆盘和转子之间环形工作容积的物料进行
剧烈搅拌。
卧轴式搅拌机又称圆槽式搅拌机,是七十年代发展起来的一种新型搅拌机,它可分为
单轴式和双轴式,这种形式的搅拌机兼有自落和强制两种搅拌的机能,搅拌叶片的线速度比涡浆式小,因而耐磨性要比涡浆式小高。
单卧轴搅拌机是由德国ELBA公司研制生产。它具有结构紧凑、消耗功率小、叶片衬板
耐磨性好,能满载启动和具有搅拌轻质混凝土能力的优点。我国也向该公司引进了样机。
双卧轴搅拌机是随着混凝土施工工艺的改进而逐渐发展起来的新机型。国外从二十世
纪四十年代后期开始在美国和德国出现,但因轴端密封技术的不成熟,其发展基本处于停顿状态。直到七十年代初,由于这项技术得到突破,双卧轴搅拌机在不少国家右重新发展起来,目前已形成系列产品。我国于二十世纪八十年代初研制成功,但发展迅速,在产品规格和产品数量上,都远远超过了其它机型。
搅拌机构是双卧轴搅拌机的核心部分,混凝土搅拌质量的好坏,生产率的高低,使用维修费用的多少都与它有关。搅拌机构是由水平安置的双圆槽形伴筒、两根按相反方向转动的搅拌轴和其上安装的搅拌叶片组成的。搅拌叶片的作用半径是相互交叉的,叶片与轴中心线成一定角度,当搅拌轴转动时,叶片一方面带动混和料在两个拌筒内轮番地作圆周运动,上下翻滚,同时在搅拌叶片相遇或重叠的部分,混和料在两轴之间的共域相互交换;另一方面推动混和料沿着搅拌轴方向,不断地从旋转平面向另一个旋转平面运动。
3总体设计及动力元件选择
3.1总体设计
在本次设计中我选择的是双卧轴混凝土搅拌机的机械部分设计,其主要由传动系统、搅拌输送装置、搅拌筒、及外供水系统等组成,但是搅拌机的核心部分是搅拌机构。
由于考虑到自己设计水平有限,设计整个机械部分的任务量太大,可能无法完成,所以我对其核心机构—搅拌机构进行了详细的设计计算。因为搅拌叶片的布置和形状选择是衡量混凝土搅拌机搅拌质量和搅拌效率的重要指标,所以我从叶片的布置和选型来说明整个搅拌系统的工作过程及其原理。对于其他部位做出了粗略的阐述和设计,先整体了解一下双卧轴混凝土搅拌机的主要机构,由电动机、搅拌轴、搅拌叶片、联轴器、搅拌筒体、减速器这些部分组成(如下图所示)。
图1 双卧轴混凝土搅拌机 Fig.1 Double axes concrete mixer
1减速器 2联轴器 3搅拌轴 4进料口 5搅拌筒体 6出料口
1.电机、减速器由联轴器连接在一起,减速器与搅拌轴也由联轴器连接在一起,安装在底座上组成一个整体,它们之间用螺栓联结以便装卸和运输。
2. 搅拌系统由搅拌筒,搅拌轴及轴上的叶片组成,完成物料的搅拌及输送工作。两搅拌轴在搅拌筒内成对称方向布置,搅拌轴主要用于输送物料,同时可以用来搅拌和输送物料。本次设计将主要阐述搅拌机构的设计与计算。
3.2混凝土搅拌机的工作原理
双卧轴混凝土搅拌机是由水平设置在搅拌筒内壁的两根搅拌轴组成,轴上安装搅拌叶片,包括入料叶片和搅拌叶片以及反向叶片。入料叶片和搅拌叶片为螺旋状,紧贴搅拌轴安装,而搅拌叶片为螺旋带状,与搅拌轴之间有一定的间隙,反向叶片为螺旋桨的形式设计。工作时,物料由进料口进入,通过入料叶片的转动使物料沿着搅拌轴向出料口移动,同时经过搅拌叶片转动及反向叶片的阻滞和反作用力使筒内物料进行剪切、挤压和翻转推移等搅拌作用。由于反向叶片的逆流作用,使物料在剧烈的相对运动中得到均匀的拌和,因而拌和质量好,效率高。
3.3电动机的选型
由于双卧轴混凝土搅拌机从结构上看,主要就是依靠电机的旋转,带动减速机的转动,进而带动搅拌轴的旋转。因此,电机是整个装置的动力元件。由于在露天工作,工作时灰尘较多,土扬水溅的工作场合。在搅拌的过程中,由于混凝土在不断的搅拌过程中消耗动力,因此双卧轴混凝土搅拌机的生产能力决定着电机的功率。此处电动机选型计算不详细涉及功率计算,而依据工作装置转速进行电机选型。异步电机具有结构简单、维修方便、工作效率高、重量较轻、成本较低、负载特性较硬等特点,是应用较广、需求较多的一类电机。综合考虑各个条件,暂选电机为Y180M-4型电机。查表知该电机功率为18.5KW。转
速为1470转/min。效率为90%,额定转矩为2.0 KW ,最大转矩为2.2KW。
3.4减速器的选型
由于混凝土搅拌机在搅拌时,为了使混凝土搅拌的比较均匀,搅拌轴的转速不宜过快。但考虑到该机器的生产能力,搅拌轴的转速又不可太慢。综合考虑一下,参考其它机器的转速,该搅拌轴的转速在40r/min左右。通过查表知暂选减速器的型号为ZSY224,减速器i=40,电动机转速为1470r/min,则搅拌轴的转速为38r/min符合要求。还可查出该减速器额定功率为64KW。 (1) 机械强度的校核计算 P1C P1W KA P1
式中 P; 1C-减速器的计算输入功率(KW) P; 1W-减速器的实际输入功率(KW) KA-工况系数;
' P。 1-与实际输入转速相对应的额定输入功率(KW)
'
混凝土搅拌机属于中等冲击,据表查得工况系数KA=1.5。计算输入功率为 P1C P1W KA
' =18.5 1.5=27.75<P1
该减速器满足机械强度要求。 (2) 校核热功率
Pt P1W K1 K2 K3 PG 式中 Pt-计算热功率(KW);
K1-额定功率利用系数;
K2-负荷率系数; K3-环境温度系数; 。 PG-许用热功率(KW)
功率利用率
P18.51W
=0.29,查表知额定功率利用系数K1=1.5;由图知,载荷率系数K2P641
3
=0.7;由图知,环境温度系数K=1.3;由表知,许用热功率P=87kw。 G计算热功率为 Pt P1W K1 K2 K3
=18.5 1.5 0.7 1.3 =19.5<PG
热平衡校核通过。选用减速器代号为ZSY224。
3.5连轴器的选择与计算
由于电机与减速器和减速器与搅拌轴之间需要传递扭矩和运动,因此需要联轴器来保持它们一同回转而不脱开。
由于凸缘联轴器具有结构简单,制造方便,成本较低,装拆、维护简便,可传递大扭
矩。因此,我们可以选择该联轴器作为该机器的联轴器。由于电机和减速器已经选定,减速器连接的轴已经确定。因此联轴器的基本尺寸参照机械零件设计手册,可以确定下来。然后根据安装和配合需要的尺寸,来确定最终的加工的大小和尺寸。
4搅拌机构的设计与计算
4.1总体方案的拟定
双卧轴搅拌机的搅拌机构主要由搅拌筒和两根搅拌轴及轴上附加的叶片组成,两搅拌轴在搅拌筒内成对称方向布置,一般来说,双卧轴混凝土搅拌机都是一个搅拌轴主要用于输送物料,而另一个搅拌轴用来搅拌和输送物料。搅拌叶片在轴上布置对混合物均质性有着重大的影响。对搅拌机筒体中充填性能及对机器生产率和搅拌过程耗电量的也有着影响,在叶片不同的布置方式下,叶片轴转速对混合物均质性的有不同影响,在叶片不同布置和转速下,搅拌机筒体的安装倾角对搅拌过程及对混凝土制件强度指标有着不同的影响。
为了设计合理的搅拌机构,必须从叶片的形状和布置及筒体的安装来提高搅拌质量和效率。初步拟定以下几种方案:
a型可使物料连续顺向流动的布置,两轴上叶片反向安装,但都能确保物料朝卸料口移动。
b型两轴上叶片在外型上是同向布置,但一根轴的叶片把混合物推向卸料槽,而另一根轴则相反。
c型两轴叶片在外型上是同向布置,并且筒体向卸料一侧倾斜一个角度。
d型叶片外型上同向布置,筒体倾斜安装,并且在靠近卸料口处,轴上装有阻滞作用的叶片。
e型混合布置,在一根轴上安装的叶片使物料沿着搅拌机筒体从装料口朝卸料口流动。在另一根轴上,使物料顺着流动的叶片与逆向流动的叶片交替安装,而两根轴的卸料端都装有阻滞作用的叶片(分别如下图所示)。
(a)
(b)
(c) (d)
图2 叶片的布置形式 Fig.2 Layout forms of leaves
图上示出了搅拌机的叶片在轴上安装的几种布置方式(假设叶片设置在一个平面上并只标记出安装角度)。
4.2 方案的分析和确定
a方案中两轴上的叶片反向安装,都能确保物料朝着卸料口移动。但是其移动速度太快搅拌质量差,所以不予考虑。
b方案两轴上的叶片同向布置,但是推动物料的的方向相反,会使物料移动速度过慢或者无法移动堵死搅拌机。
c方案两轴上叶片也是同向布置,为了使物料能够顺利移动变使筒体向卸料口方向倾斜一个角度,这个方案可以考虑。但是倾斜的角度很难把握,难以找到合适的角度确保搅拌质量和效率。
d方案是在c方案的基础上在卸料口附近加上阻滞作用的叶片,可以确保倾斜角度稍大的情况下也能控制物料正向移动速度,提高搅拌质量,此方案可选。
e方案在e方案的基础上加以改进,一根轴上安装顺流叶片,另一根轴上的顺流和逆流的叶片交替安装,使其搅拌更加均匀彻底,同时两根轴都加阻滞叶片。
经过这些方案的研究和考虑,决定选择e方案混合布置的叶片。但安装倾斜的筒体对搅拌机构的稳定性和寿命有所影响,但是要其叶片要有同向布置,搅拌推动物料的方向才会相反作用,物料逆流,搅拌才会充分。于是选择了以下叶片的布置方案(如下图所示)。
图3 设计叶片的布置
Fig.3 The layout design blade
在入料端使用宽螺旋状的入料叶片,中央部分用带状的螺旋叶片,并且利用螺旋桨式的叶片作为反向叶片,搅拌叶片的正向叶片和反向叶片分别在两轴上交替安装。通过对叶片相对运动分析可知:这种搅拌叶片正反依次交替的正反排列得到的逆流次数要比搅拌叶片双正排列得到的次数多,因此搅拌作用更强烈,搅拌质量也更好。虽然这样搅拌效率高,搅拌作用更强烈,搅拌质量也更好。但这种情形下,搅拌叶片的运动顺序容易破坏拌筒内物料的整体流动,因为物料以连续递推的方式前进。为了解决这些情况,选用的反向叶片的长度一般比正向叶片的要小一些。此外,采用螺旋桨叶片,作为反向叶片,各叶片均匀分布在轴上。这种叶片,可以承受较大的反向推力,搅拌的效率较高。螺旋桨叶片间断的分布在轴上,使搅拌更加的充分。
筒体内的物料被正、反叶片分成两部分,一部分向前推进,另一部分则向后推送,使物料产生连续不断的轴向往复运动,将处于不同半径处的物料翻转,在正反叶片的共同作用下,物料在机内反复翻动、扩散、搅拌、揉搓,使物料混合均匀。由于正向叶片大于反向叶片,且入料叶片比搅拌叶片宽且与搅拌轴之间垂直方向看是没有缝隙的,以保证所以物料在作轴向往复运动的时候,顺流的推进力总体上大于反推进力,于是物料总体上是向出料口方向前进的,因而可以满足连续工作的要求。此外,物料由通常的单向运动方式改为往复运动,使得设备在有限的长度,提高物料的生产率和搅拌效率。
经过以上分析选择此混合型正反叶片相互交替布置是最合理的方案,且正向搅拌叶片设计为螺旋带状,反向叶片为螺旋桨式,入料叶片紧贴搅拌轴安置,增强推进力。
4.3叶片主要参数的设计
以入料叶片为例来说明叶片的主要参数设计。
V1—物料在料槽中的轴向移动速度(m/s),在实际工作中,通常不考虑物料轴向阻滞的影响,因此物料在料槽内的轴向移动速度V1≈s n/60。
∴ Q 47 K1 A c r D2.5
由上式可以看出,当物料输送量Q确定后,可以调整螺旋外径D、螺距S、螺旋转速n和填充系数φ四个参数来满足Q的要求。 所以,螺旋直径
D 对于螺旋输送叶片,其物料输送量可按下式计算: Q 3600 F r V1 c
式中 Q———螺旋输送搅拌机输送量(t/h)
F———料槽内物料层横截面积(m2)
F D2(φ为填充系数)
4
r———物料的单位容积质量(3)
m
c———倾斜输送系数;
令K , 所以
D K 式中 K———物料综合特性系数。
物料综合特性系数为经验数值。一般说来,根据物料的性质, 查表取K=0.0573
为填充系数—取值为0.3
C=倾斜输送系数。该搅拌机的倾斜角度为0,查表取值为1 代入数据得
D=0.053 。 为方便生产,一般把计算出来的D值应尽量圆整成下列标准直径(mm):150,200,250,300,400,500,600,700,800 所以D=500 mm。
4.4搅拌主轴转速的确定
随着主轴的转动,使得混凝土产生一个附加的绕轴旋转的循环流。主轴一定的转数范围内,这种附加的循环流对混凝土的影响并不显著。但是,一定的转数时,混凝土就会产生垂直于输送方向的跳跃翻滚,这时主轴将主要起搅拌而不再起轴向的推进作用。这不仅会降低物料的输送效率,加速设备构件的磨损,而且会降低生产率。因此,为了避免这种现象的产生,主轴的转速不得超过它的临界转速。
为了保证位于主轴附近的混凝土不会因为离心力的作用而产生垂直于输送方向的径向运动,它所受的离心力不能大于其自身重力,而叶片外径处的混凝土所受的离心力最大,因此混凝土所受离心力的最大值与其自身重力之间应有如下关系:
m
2
max
Dy2
mg
nmax
30
nmax
30
nmax 式中 nmax—主轴最大转速, 即临界转速,r/min;
Dy—螺旋叶片外径,m; g—重力加速度,m/s2; K—物料综合特性系数。
令A
,则式可转化为:
nmax
式中 A—物料综合特性系数,查表知:A=37
代入数据得nmax
=52.3 r/min