手机版

Nonlinear Least Squares Optimisation of Unit Quaternion Func

发布时间:2021-06-06   来源:未知    
字号:

Pose estimation from an arbitrary number of 2-D to 3-D feature correspondences is often done by minimising a nonlinear criterion function using one of the minimal representations for the orientation. However, there are many advantages in using unit quatern

InProc.14thInt.Conf.PatternRecognition,Brisbane,Australia,pp.425-427,August1998.

NonlinearLeastSquaresOptimisationofUnitQuaternionFunctionsforPose

EstimationfromCorrespondingFeatures

AleˇsUde

JoˇzefStefanInstitute,DepartmentofAutomatics,BiocyberneticsandRobotics

Jamova39,1000Ljubljana,Slovenia,E-mail:ales.ude@ijs.si

Abstract

Poseestimationfromanarbitrarynumberof2-Dto3-Dfeaturecorrespondencesisoftendonebyminimisinganonlinearcriterionfunctionusingoneoftheminimalrep-resentationsfortheorientation.However,therearemanyadvantagesinusingunitquaternionstorepresenttheori-entation.Unfortunately,astraightforwardformulationoftheposeestimationproblembasedonquaternionsresultsinaconstrainedoptimisationproblem.Inthispaperweproposeanewmethodforsolvinggeneralnonlinearleastsquaresoptimisationproblemsinvolvingunitquaternionfunctionsbasedonunconstrainedoptimisationtechniques.Wedemonstratetheeffectivenessofourapproachforposeestimationfrom2-Dto3-Dlinesegmentcorrespondences.

1.Introduction

Theobjectposeisde nedasthedisplacementoftheco-ordinateframerigidlyattachedtotheobjectfromitsini-tialposition,whereitisalignedwiththeworldcoordinateframe,toitscurrentposition.Thereexistanalyticalandlin-earsolutionstotheproblemofposeestimationfrom2-Dto3-Dfeaturecorrespondences[1,2],buttheyaresensitivetonoise.Inthepresenceofnoise,whichisunavoidableinreal-worldapplications,algorithmsbasedonnonlinearop-timisationmethodsgivemoreaccurateresults.

Nonlinearoptimisationtechniqueshavebeenusedforposeestimationbymanyresearchersinthepast.Agoodoverviewisgivenin[1].Inmostoftheseapproaches,Eu-ler’sangleswereusedtoparameterisethegroupofrotationsSO(3)oftheEuclideanspace.However,itiswellknownthatSO(3),whichisathreedimensionalmanifold,cannotbegloballyembeddedinthethreedimensionalEuclideanspace.Itfollowsthatiftherotationgroupisrepresentedbythreerealparameters,theEuclideanmetrictopologyin

Currently,

theauthoriswiththeKawatoDynamicBrainProject,ER-ATO,JapanScienceandTechnologyCorporation,2-2HikaridaiSeika-cho,Soraku-gun,Kyoto619-0288,Japan,e-mail:ude@erato.atr.co.jp.

R3doesnotinduceaglobaltopologyandmetricstructureinSO(3).Thissuggeststhatcommonsolutionsusingminimalrepresentationsoftherotationgrouparenotideal.

Therepresentationoftherotationgroupbyunitquater-nions,whichformasphereS3inR4,hasmanyadvantagesoverminimalrepresentations.Methodsforposeestimationbasedonthequaternionrepresentationoftheorientationhavebeenproposedintheliteraturebefore[1],buttheposeestimationproblemhasbeenformulatedasanoptimisationprobleminR4ratherthanonS3intheseapproaches.

2.Preliminaries

3

Inthefollowingweshallneedtheexponentialmapexp:R→S3,which isgivenexp(r)=

by

cos( r ),sin( r )

r

,r=0.(1)(1,0,0,0),r=0

r

Theexponentialmaptransformsatangentvectorr∈R3T∈S3≡1(S3)intoq,whereqisapointatdistance r from1alongageodesiccurvestartingfrom1inthedirectionofr[3].Geodesicsarede nedasshortestpathsconnectinganytwopointsonamanifold3(sphereS3).Itturnsoutthatforanyotherpointq∈Sandforanyr∈T3S)3≡R3andtheexponentialq∈Tmapatq(S3),rq,expq qT(S3)1(S→,havingtheabovepropertiesisgivenby

q:qexpq(rq)=exp(rq q) q,

(2)

where denotesthequaternionmultiplication.

Letsconsidertheproblemofposeestimationfrom2-Dto3-Dlinesegmentcorrespondences.Letm(x1k,x2

k=

k),k=1,...,N,betheend-pointsofthek-th3-Dlinesegmentbelongingtotheobject’smodelandletAj,j=1,...,M,betheprojectivemappingontothej-thimageplane.Thesemappingsshouldbemadeavailablebyacameracalibrationprocedure.Letfdenotethemappingwhichtransformstheend-pointrepresentationofa2-Dlinesegmentintoitsmid-point f(v,vvTT

representation T12)=1+v22,arctan

y2 y1

x2 x1

,(3)

Nonlinear Least Squares Optimisation of Unit Quaternion Func.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)