好用
2)三种类型偏微分方程解的光滑性不同,对定解条件的光滑性要求也不同; 椭圆型和抛物型方程的解是充分光滑的,因此对定解条件的光滑性要求不高。而双曲型方程允许有所谓的弱解存在(如流场中的激波),即解的一阶导数可以不连续,所以对定解条件的光滑性要求很高,这也正是采用有限元法求解双曲型方程困难较多的原因之一。
3)三种类型偏微分方程的影响区域和依赖区域不一样。
在双曲型和抛物型方程所控制的流场中,某一点的影响区域是有界的,可采用步进求解。如对双曲型方程求解时,为了与影响区域的特征一致,采用上风格式比较适宜。而椭圆型方程的影响范围遍及全场,必须全场求解,所采用的差分格式也要采用相应的中心格式。
数值计算的与实验值之间的误差来源只要有这几个:物理模型近似误差(无粘或有粘,定常与非定常,二维或三维等等),差分方程的截断误差及求解区域的离散误差(这两种误差通常统称为离散误差),迭代误差(离散后的代数方程组的求解方法以及迭代次数所产生的误差),舍入误差(计算机只能用有限位存储计算物理量所产生的误差)等等。在通常的计算中,离散误差随网格变细而减小,但由于网格变细时,离散点数增多,舍入误差也随之加大。
由此可见,网格数量并不是越多越好的。
再说说网格无关性的问题,由上面的介绍,我们知道网格数太密或者太疏都可能产生误差过大的计算结果,网格数在一定的范围内的结果才与实验值比较接近,这样在划分网格时就要求我们首先依据已有的经验大致划分一个网格进行计算,将计算结果(当然这个计算结果必须是收敛的)与实验值进行比较(如果没有实验值,则不需要比较,后面的比较与此类型相同),再酌情加密或减少网格,再进行计算,再与实验值进行比较,并与前一次计算结果比较,如果两次的计算结果相差较小(例如在2%),说明这一范围的网格的计算结果是可信的,说明计算结果是网格无关的。再加密网格已经没有什么意义(除非你要求的计算精度较高)。但是,如果你用粗网格也能得到相差很小的计算结果,从计算效率上讲,你就可以完全使用粗网格去完成你的计算。加密或者减少网格数量,你可以以一倍的量级进行。
判断网格质量的方面有:
Area单元面积,适用于2D单元,较为基本的单元质量特征。
Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1.
Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。
Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。
EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。最好是要控制在0到