认识一元二次方程
第1课时一元二次方程
【学习目标】
1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.
2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.
3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
【学习重点】
一元二次方程的概念.
【学习难点】
如何把实际问题转化为数学方程.
情景导入生成问题
1.单项式和多项式统称为整式.
2.含有未知数的等式叫做方程.
3.计算:(x+2)2=x2+4x+4;(x-3)2=x2-6x+9.
4.计算:(5-2x)(8-2x)=4x2-26x+40.
自学互研生成能力
知识模块一探索一元二次方程
先阅读教材P31“议一议”前面的内容,然后完成下面问题:
1.在第一个问题中,地毯的长可以表示为(8-2x)m,宽可以表示为(5-2x)m,由矩形的面积公式可以列出方程为(8-2x)(5-2x)=18.
2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?
答:设五个连续整数中间的一个数为x,由题意可列方程,得(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2
1.问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?
2.问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?
你能设出未知数,列出相应的方程吗?
答:问题1由题意可列方程:(100-2x)(50-2x)=3600;问题2由题意可列出方程:(x+6)2+72=102.
3.你能通过观察下列方程得到它们的共同特点吗?