手机版

Literature Review 英文文献综述模板(3)

发布时间:2021-06-06   来源:未知    
字号:

IEEE标准格式

input-knowledgeaccuracy.However,theuseofself-containeddatabaseiscostly,thatonlyfewinstitutionscanaffordthehardwareexpense,whichmakestheapplicationofWatsonexpensive.Anotherlimitationisthatthestructuredresourceisrelativelynarrowcomparedwithvastunstructurednatural-languagetexts.Oneofthepossibleimprovementistouseonlinedataandordinaryonlinesearchengineto ndpossiblerelatedarticlesandanalyzethemwithPCclients.Despitethetradeoffbetweenaccuracyandcost,becauseofthepossibletheunrealdataandincorrectinformationonline,itmakesthetechniquemorerealizableingeneral.

[4]V.Hatzivassiloglou,J.Klavans,andE.Eskin,DetectingText

SimilarityOverShortPassages:ExploringLinguisticFeatureCombinationsViaMachineLearning,JointSIGDATConferenceonEmpiricalMethodsinNaturalLanguageProcessingandVeryLargeCorpora,2000.

[5]K.Nigam,TextClassi cationfromLabeledandUnlabeledDoc-umentsusingEM,MachineLearning,Volume39,pp-103134,2000.

[6]E.Liddy,NaturalLanguageProcessing,InEncyclopediaof

LibraryandInformationScience,2ndEd.NY.MarcelDecker,Inc,2001.

[7]S.TongandD.Koller,SupportVectorMachineActiveLearning

withApplicationstoTextClassi cation,JournalofMachineLearningResearchpp-45-66,2001.

[8]F.Sebastiani,MachineLearninginAutomatedTextCategoriza-tion,ACMComputingSurveys(CSUR),Issue1,Volume34,pp-1-47,2002.

[9]P.SoucyandG.Mineau,FeatureSelectionStrategiesforText

Categorization,AI2003,LNAI2671,pp-505-509,2003.

[10]X.Han,G.Zu,W.Ohyama,T.Wakabayashi,andF.Kimura,

AccuracyImprovementofAutomaticTextClassi cationBasedonFeatureTransformationandMulti-classi erCombination,LNCS,Volume3309,pp.463-468,Jan2004.

[11]M.Ikonomakis,S.Kotsiantis,V.andTampakas,TextClassi ca-tionusingMachineLearningTechniques,WSEASTransactionsonComputers,Issue8,Volume4,pp-966-974,2005.

[12]R.CollobertandJ.Weston,uni edarchitecturefornaturallan-guageprocessing:deepneuralnetworkswithmultitasklearning,ICML’08Proceedingsofthe25thinternationalconferenceonMachinelearning,ACMNewYork,USA,Pages160-167,2008.[13]R.Collobert,J.Weston,L.Bottou,M.Karlen,K.Kavukcuoglu,

andP.KuksaNaturalLanguageProcessing(Almost)fromScratch,JournalofMachineLearningResearch,Volume12,pp-2493-2537,2011.

[14]A.Gliozzo,O.Biran,S.Patwardhan,andK.McKeown,Seman-ticTechnologiesinIBMWatson,The10thInternationalSemanticWebConference,Bonn,Germany,2011.

[15]D.Ferrucci,Introductionto“ThisisWatson”,IBMJournalof

ResearchandDevelopment,Volume56Number3/4,pp-1:1-1:15May/July2012.

[16]G.Tesauro,D.Gondek,J.Lenchner,J.Fan,andJ.Prager,

Simulation,learning,andoptimizationtechniquesinWatsonsgamestrategies,IBMJournalofResearchandDevelopment,Volume56,Number3/4,pp-16:116:11,2012.

V.CONCLUSION

Ascanbeseenfromthecontentabove,mosttechniquesusedintextanalysisarebasedon‘wordfeature’extraction,wordtypes,andrelations,whichareallsemantictechniques.WhileWatsonalsousessearchingtechniquesto ndtheexactanswershownintext.However,themachineslacktheabilitytoconcludethemainideainaparagraph,whichismorerelatedwithabstractlogicthinking.Whilethewaythathumanreadconcernsnotonlyonvocabulariesandmeanings,butalsothestructureofparagraphandthelocationofsentences,forexample,the rstsentenceintheparagraphusuallyguidesthefollowingcontent,whichhelpstellthesigni canceofthesentencesandwords.Therefore,usingmachinelearningtoanalyzethestructureofanarticleandcombiningwiththemeaningofeverysentencemightgeneratetheabilitytoconcludethemainidea,whichcanbeusedintextscanningandclassi cation.

REFERENCES

[1]S.Dumais,J.Platt,D.Heckerman,andM.Sahami,Inductive

LearningAlgorithmsandRepresentationsforTextCategoriza-tion,ProceedingsoftheseventhinternationalconferenceonInformationandknowledgemanagement,pp-148-155,1998.[2]T.Joachims,TextCategorizationwithSupportVectorMachines:

LearningwithManyRelevant,ECML-98Proceedingsofthe10thEuropeanConferenceonMachineLearning,pp-137-142,1998.[3]T.Joachims,TransductiveInferenceforTextClassi cationusing

SupportVectorMachines,InternationalConferenceonMachineLearning(ICML),pp-200-209,1999.

3

Literature Review 英文文献综述模板(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)