∴∠1+∠BAD=180°(两直线平行,同旁内角互补)
∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
3、练一练:(P.18课内练习1、2)
4、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。
AB∠CBD与∠D相等吗?请说明理由。
思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为DC图1-15什么?
(3)∠CBD与∠ABD相等吗?为什么?
解:∠D=∠CBD
∵∠ABC+∠C=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)
∴∠D=∠ABD(两直线平行,内错角相等)
∵BD平分∠ABC(已知)
∴∠CBD=∠ABD=∠D a13想一想:是否还有其它方法?(用三角形内角和定理等) 24
b
5、练一练:
如图,已知∠1=∠2,∠3=65°,求∠4的度数。 cd
五、拓展
1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由
2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF
BA
F图1 E
DC图2六、知识整理:
1、平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
2、思维方法:如不能直接说明其成立,则需说明它们都与第三个量相等。
3、要注意一题多解。
4、到目前为止说明两个角相等有哪些方法?课后归纳。
七、布置作业:见作业本