手机版

Genetic algorithms using multi-objectives(10)

发布时间:2021-06-07   来源:未知    
字号:

We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current s

188A.Cardonetal./RoboticsandAutonomousSystems33(2000)

179–190

Fig.8.Evolutionoftheeconomicfunctionaccordingtothenumberofagentsandthenumberofgenetic

operations.

causedbythepossibleexposuretoexternaleventsoriginatingintheenvironmentandduringthegeneticcodereplicationphase.

Ifwealsointroducethenotionofmotivatedbe-haviorforagents[5],wegodeeplyintoarti ciallifeproblematics.Thegeneticautonomyandthenotionofmotivationforanagentmayleadtoadrasticallynewkindofemergencephenomenon[1](differentso-cialbehavior,auto-referringevaluationprocess,etc.)inself-organizingMASs.Itiscertainlyadif culttaskbutitmaysowtheseedsofaproli capproachcon-cerningarti ciallife.10.Conclusion

Determininganoptimalsolutionisalmostimpos-sible,buttryingtoimproveanexistingsolutionisthewaytoimprovetaskallocation.Duringthesimulationprocess,agentsgranularityappearswiththemutationbehaviorintroducedbyGA[38].Attheendofthesimulation,communicationsbetweenglobalandlocal

Fig.9.MASandGAintheenvironment.

Genetic algorithms using multi-objectives(10).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)