路的其他性能有着密切的关系。
在单管共射放大电路中,仅仅具备上述各个组成部分还不足以保证电路很好地起放大作用。为了使三极管工作在放大区,还必须使发射结正向偏置,集电结反向偏置,为此,VCC,RC、VBB和Rb等元件的参数应与电路中三极管的输入、输出特性有适当的配合关系。
2.2.2 单管共发射极放大电路和工作原理
本节将定性地分析如上图所示的单管共射放大电路如何实现放大作用。
假设电路中的参数及三极管的特性能够保证三极管工作在放大区。此时,如果在放大电路的输入端加上一个微小的输入电压变化量△uI,则三极管基极与发射极之间的电压也将随之发生变化,产生△uBE。因三极管的发射结处于正向偏置状态,故当发射结电压发生变化时,将引起基极电流产生相应的变化,得到△uB。由于三极管工作在放大区,具有电流放大作用,因此,基极电流的变化将引起集电极电流发生更大的变化,即△iC等于△iB的β倍。这个集电极电流的变化量流过集电极负载电阻RC,使集电极电压也发生相应的变化。由上图可见,当iC增大时,RC上的电压降也增大,于是UCE将降低,因为RC上的电压与UCE之和等于VCC,而这个集电极直流电源是恒定不变的,所以UCE的变化量△uCE与△iC在RC上产生的电压变化量数值相等而极性相反,即△uCE=-△iCRC。在本电路中,集电极电压UCE即等于输出电压uO,故△uO=△uCE。 综上可知,当输入电压有一个变化量△uI时,在电路中将依次产生以下各个电压或电流的变化量:△uBE,△iB,△iC,△uCE和△uO。当电路参数满足一定条件时,可能使输出电压的变化量△uO比输入电压的变化量△uI大得多,也就是说,当在放大电路的输入端加上一个微小的变化量△uI时,在输出端将得到一个放大了的变化量△uO,从而实现了放大作用。
从以上的分析可知,组成放大电路时必须遵循以下几个原则:
首先,外加直流电源的极性必须使三极管的发射结正向篇置,而集电结反抽偏置,以保证三极管工作在放大区。此时,若基极电流有一个微小的变化量△iB,将控制集电极电流产生一个较大的变化量△iC,二者之间的关系为△iC=β△iB。
其次,输入回路的接法应该使输入电压的变化量△uI能够传送到三极管的基极回路,并使基极电流产生相应的变化量△iB。 第三,输出回路的接法应使集电极电流的变化量△iC能够转化为集民极电压的变化量△uCE,并传送到放大电路的输出端。 只要符合上述几项原则,即使电路的形式有所变化,仍然能够实现放大作用。
现在来观察上图所示的单管共射放大电路。这是一个原理性电路,若付诸实用主要存在两个缺点,其一,在这个只有一个放大元件的简单电路中需要两路直流电源VCC和VBB,既不方便也很不经济;其二,放大电路的输入电压uO不共地,在实际应用时也不可取。为此,可以根据上述组成放大电路的几项原则,对原来的电路加以改进。见下图。