M-theory on G_2 manifolds and the method of (p,q) brane webs
Instringtheory,thepowerofthetoricgeometryrepresentationisduetothefollowingpoints:
(1)Thetoricdataofthepolytope nhavesimilarfeaturestotheADEDynkindiagramsleadingtonon-abeliangaugesymmetriesintypeIIsuperstringcompacti cationsonCalabi-Yaumanifolds[7,8,9,10].(2)Thetoric xedloci,whichcorrespondtothevanishingcycles,havebeenknowntobeassociatedwithD-branecharges[32].Thelatterwillbeusedinsection4todiscussthephysicscontentofM-theoryonourproposedmanifoldsofG2holonomy,usingareformulationofthemethodof(p,q)websintypeIIsuperstringonCalabi-Yauthreefolds.Toillustratethemainideaoftoricgeometry,letusdescribethephilosophyofthissubjectthroughcertainusefulexamples.
(i)P1projectivespace.
Thisisthesimplestexampleintoricgeometrywhichturnsouttoplayacrucialroleinthebuildingblocksofhigher-dimensionaltoricvarietiesandinthestudyofthesmallresolutionofADEsingularitiesoflocalCalabi-Yaumanifolds.P1hasanU(1)toricaction
z→eiθz(2.1)
withtwo xedpointsv1andv2ontherealline.Thelatterpoints,whichcanbegenerallychosenasv1= 1andv2=1,describerespectivelynorthandsouthpolesoftherealtwosphereS2~P1.Thecorrespondingone-dimensionalpolytopeisjustthesegment[v1,v2]joiningthetwopointsv1andv2.Thus,P1canbeviewedasasegment[v1,v2]withacircleontop,wherethecirclevanishesattheendpointsv1andv2.
(ii)P2projectivespace.
P2isacomplextwo-dimensionaltoricvarietyde nedby
P=2C3\{(0,0,0)}