手机版

DETERMINANT EXPRESSIONS FOR HYPERELLIPTIC FUNCTIONS IN GENUS(13)

发布时间:2021-06-05   来源:未知    
字号:

Let #(u) and #(u) be the usual functions in the theory of elliptic functions. The following two formulae were found in the nineteenth-century. First one is

HYPERELLIPTICFUNCTIONSINGENUSTHREE13

toΛ.Nowweregardthebothsidestobefunctionsofuonκ 1ι(C).Weseethelefthandsidehasitsonlypoleatu=(0,0,0)moduloΛby2.8(1),andhasitszeroesatu=±u1andu=±u2moduloΛby2.4(2),2.9.Theseallzeroesareoforder1by2.4(2)and2.11.ItsLaurentexpansionatu=(0,0,0)isgivenby2.8(2)and2.10asfollows:

σ3(u1+u2)σ2(u1)σ2(u2)σ3(u1 u2)

Therighthandsideis 1 1 1x(u1) x(u2) u(3)4+···).

Proof.Weknowthelefthandsideoftheclaimedformulais,asafunctionofu,aperiodicfunctionwithrespecttoΛ.Itspoleisonlyatu=(0,0,0)moduloΛandiscontributedonlybythefunctionsσ2(u)4,σ3(u u1),σ3(u u2),σ3(u u3).By2.8(2)and2.10,theorderofthepoleis4×3 3×2,thatis6.Thezeroesofthelefthandsideareatu= u1, u2,andu3moduloΛwhicharecomingfromσ(u+u1+u2+u3);andatu=u1,u2,u3whicharecomingfromσ(u u1),σ(u u2),σ(u u3),respectively.These6zeroesareoforder1by2.11.Thusweseethatthedivisorsoftwosidescoincide.Thecoe cientofleadingtermoftheLaurentexpansionofthelefthandsideis

σ(u1+u2+u2)σ2(u1)σ2(u2)σ2(u3) i<j 1 1= 1 1x(u)x(u1)x(u2)x(u3)x2(u)x2(u1)x2(u2)x2(u3)σ2(u)4σ2(u1)4σ2(u2)4σ2(u3)4 x3(u) x3(u1) .x3(u2) x3(u3)σ3(ui uj)

DETERMINANT EXPRESSIONS FOR HYPERELLIPTIC FUNCTIONS IN GENUS(13).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)