Let #(u) and #(u) be the usual functions in the theory of elliptic functions. The following two formulae were found in the nineteenth-century. First one is
4 YOSHIHIROONISHI
processfrom(1.3),ourgeneralizationof(1.4)isobtainedbysimilarlimittingprocessfromthegeneralizationof(1.3).
Althoughthispaperisalmostlybasedon[13],severalcriticalfactsareappearedincomparisonwith[13].Sections3and4aredevotedtogeneralize(1.3)and(1.4),respectively.WerecallinSection2thenecessaryfactsforSections3and4.
TheauthorstartedthisworkbysuggestionofS.Matsutaniconcerningthepaper
[13].Afterhavingworkedoutthispaper,theauthortriedtogeneralizetheformula(1.3)furthertothecaseofgenuslargerthanthreeanddidnotsucceed.Theauthorhopesthatpublicationofthispaperwouldcontributetogeneralizeourformulaoftype(1.3)or(1.1)tocasesofgenuslargerthanthreeinthelineofourinvestigation.Matsutanialsopointedoutthat(1.4)canbegeneralizedtoallofhyperellipticcurves.Thereaderwhoisinterestedinthegenaralizationof(1.4)shouldbeconsultwiththepaper[10].
Cantor[5]gaveanotherdetermiantexpressionofthefunctionthatischaracter-izedinthethirdfeatureaboveforanyhyperellipticcurve.TheexpressionofCantorshouldbeseenasageneralizationofaformuladuetoBrioschi(see[4],p.770, .3).TheAppendixof[10]writtenbyMatsutanirevealstheconnectionofourformula,thatisTheorem4.2below,andthedeterminantexpressionof[5].Sowehavethreedi erentproofsforthegeneralizationof(1.4)inthecaseofgenusthreeorbelow.
Therearealsovariousgeneralizationsof(1.1)(or(1.3))inthecaseofgenustwodi erentfromourline.Ifthereaderisinterestedinthem,heshouldbereferedtoIntroductionof[13].
Weusethefollowingnotationsthroughouttherestofthepaper.Wedenote,asusual,byZandCtheringofrationalintegersandthe eldofcomplexnumbers,respectively.InanexpressionoftheLaurentexpansionofafunction,thesymbol(d (z1,z2,···,zm)≥n)standsforthetermsoftotaldegreeatleastnwithrespecttothegivenvariablesz1,z2,···,zm.Whenthevariableortheleasttotaldegreeareclearfromthecontext,wesimplydenotethemby(d ≥n)orthedots“···”.Forcrossreferencesinthispaper,weindicateaformulaas(1.2),andeachofLemmas,Propositions,TheoremsandRemarksalsoas1.2.