Let #(u) and #(u) be the usual functions in the theory of elliptic functions. The following two formulae were found in the nineteenth-century. First one is
16 YOSHIHIROONISHI
References
1.H.F.Baker,Abelianfunctions—Abel’stheoremandthealliedtheoryincludingthetheoryofthethetafunctions—,(CambridgeUniv.Press,1897;reprint,1995).
2.H.F.Baker,‘Onthehyperellipticsigmafunctions’,Amer.J.ofMath.20(1898),301-384.
3.H.F.Baker,‘Onasystemofdi erentialequationsleadingtoperiodicfunctions’,Actamath.27(1903),135-156.
4.F.Brioschi,‘Surquelquesformulespourlamultiplicationdesfonctionselliptiques’,C.R.Acad.Sci.Paris59(1864),769-775.
5.D.G.Cantor,‘Ontheanalogueofthedivisionpolynomialsforhyperellipticcurves’,J.reineangew.Math.447(1994),91-145.
6.J.Fay,ThetafunctionsonRiemannsurfaces,LectureNotesinMath.,352,(Springer-Verlag,Berlin,1973).
7.F.G.FrobeniusandL.Stickelberger,‘ZurTheoriederelliptischenFunctionen’,J.reineangew.Math.83(1877),175–179.
8.D.Grant,‘AgeneralizationofaformulaofEisenstein’,Proc.LondonMath.Soc.62(1991),121–132.
9.L.Kiepert,‘WirklicheAusf¨uhrungderganzzahligenMultiplikationderelliptichenFunktio-nen’,J.reineangew.Math.76(1873),21–33.
10.S.MatsutaniandY.Onishi,‘Determinantexpressionforhyperellipticfunctions’,withAp-
pendixbyS.Matsutani,Preprint,(2001),/abs/math.NT/0105189.
11.D.Mumford,Abelianvarieties,(OxfordUniv.Press,1985).
12.Y.Onishi,‘Complexmultiplicationformulaeforhyperellipticcurvesofgenusthree’,(thecorrectionisavailablefromhttp://jinsha.iwate-u.ac.jp/kankyou/onishi/sup.ps),TokyoJ.Math.21(1998),381–431.
13.Y.Onishi,‘DeterminantexpressionsforAbelianfunctionsingenustwo’,Preprint,(2000),/abs/math.NT/0105188.
FacultyofHumanitiesandSocialSciences
IwateUniversity
Morioka
020-8550
Japan
onishi@iwate-u.ac.jp