手机版

智能控制技术毕业论文

发布时间:2024-08-30   来源:未知    
字号:

摘要:本文主要介绍了智能控制技术从经典控制理论、现代控制理论发展到今天的智能控制理论的发展过程和主要方法,并介绍了智能控制在工业发展、机械制造、电力电子学研究领域中的应用。

关键字:自动化 智能控制 应用

随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。

一、智能控制的发展过程

从经典控制理论、现代控制理论发展到今天的智能控制理论,经历了很长时间。

四十年代到五十年代形成了经典控制理论。经典控制理论中基于传递函数建立起来的如频率特性、根轨迹等图解解析设计方法,对于单输入-单输出系统极为有效,至今仍在广泛地应用。但传递函数对处于系统内部的变量不便描述,对某些内部变量还不能描述,且忽略了初始条件的影响。鼓传递函数描述不能包含系统的所有信息。

现代控制理论主要研究具有高性能、高精度的多变量变参数系统的最优控制问题,它对多变量有很强的描述和综合能力,其局限在于必须预先知道被空对象或过程的数学模型。

智能控制是在经典和现代控制理论基础上进一步发展和提高的。智能控制的提出,一方面是实现大规模复杂系统控制的需要;另一方面是现代计算机技术、人工智能和微电子学等学科的高度发展,给智能控制提供了实现的基础。智能控制提供了一种新的控制方法,基本解决了非线性、大时滞、变结构、无精确数学模型对象的控制问题。

二、智能控制的主要方法

通俗地讲,智能控制就是利用有关知识(方法)来控制对象,按一定要求达到预定目的。智能控制为解决控制领域的难题,摆脱了经典和现代控制理论的困境,开辟了新的途径。

智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。

1、模糊控制

模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。

2、专家控制

专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。

3、神经网络控制

神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制。

4、学习控制

(1)遗传算法学习控制

智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向 。

(2)迭代学习控制

迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。

三、智能控制的应用

当前,智能控制方法及其实现的研究已成为控制领域中一个热门课题。我国自控界在智能控制理论研究方面的成果已达国际水平,但在智能控制理论应用方面还刚刚开始。尽管智能控制理论和技术发展的历史不长,但是,其卓越的性能有道人面在各方面进行了许多应用尝试,并且取得了卓有实效的成果。

1、工业过程中的智能控制

生产过程的智能控制主要包括两个方面:局部级和全局级。局部级的智能控制是指将智能引入工艺过程中的某一单元进行控制器设计,例如智能PID控制器、专家控制器、神经元网络控制器等。研究热点是智能PID控制器,因为其在参数的整定和在线自适应调整方面具有明显的优势,且可用于控制一些非线性的复杂对象。全局级的智能控制主要针对整个生产过程的自动化,包括整个操作工艺的控制、过程的故障诊断、规划过程操作处理异常等。

2、机械制造中的智能控制

在现代先进制造系统中,需要依赖那些不够完备和不够精确的数据来解决难以或无法预

测的情况,人工智能技术为解决这一难题提供了有效的解决方案。智能控制随之也被广泛地应用于机械制造行业,它利用模糊数学、神经网络的方法对制造过程进行动态环境建模,利用传感器融合技术来进行信息的预处理和综合。可采用专家系统的“Then-If”逆向推理作为反馈机构,修改控制机构或者选择较好的控制模式和参数。利用模糊集合和模糊关系的鲁棒性,将模糊信息集成到闭环控制的外环决策选取机构来选择控制动作。利用神经网络的学习功能和并行处理信息的能力,进行在线的模式识别,处理那些可能是残缺不全的信息。

3、电力电子学研究领域中的智能控制

电力系统中发电机、变压器、电动机等电机电器设备的设计、生产、运行、控制是一个复杂的过程,国内外的电气工作者将人工智能技术引入到电气设备的优化设计、故障诊断及控制中,取得了良好的控制效果 。遗传算法是一种先进的优化算法,采用此方法来对电器设备的设计进行优化,可以降低成本,缩短计算时间,提高产品设计的效率和质量。应用于电气设备故障诊断的智能控制技术有:模糊逻辑、专家系统和神经网络。在电力电子学的众多应用领域中,智能控制在电流控制PWM技术中的应用是具有代表性的技术应用方向之一,也是研究的新热点之一。

以上的三个例子只是智能控制在各行各业应用中的一个缩影,它的作用以及影响力将会关系国民生计。并且智能控制技术的发展也是日新月异,我们只有时刻关注智能控制技术才能跟上其日益加快的技术更新步伐。

参考文献:

[1]Lee T H Ge ,S S. Intelligent control of mechatronic systems [J].Proceedings of the 2003 IEEE International Symposium on Intelligent Control,2003,646-660.

[2]Li Mengqing; Zhang Chunliang; Yang Shuzi etc. Intelligent recognition using fuzzyneural network for trend & jump pattern in control chart[J]. China Mechanical Engineering, 2004 ,15(22):1998-2000.

[3] 严宇,刘天琪.基于神经网络和模糊理论的电力系统动态安全评估[J].四川大学学报,2004,36(1):106-110.

[4] 张利平,唐德善,刘清欣.遗传神经网络在凝汽器系统故障诊断中的应用[J].水电能源科学,2004,22(1):77-79.

[5] 刘红波,李少远,柴天佑.一种设计模糊PID复合控制器的新方法及其在电厂控制中的应用[J].动力工程,2004,24(1):78-82.

[6] 顾伟军,彭亦功.智能控制技术及其应用. PROCESS AUTOMATION IN STRUMENTATION. 2006

智能控制技术毕业论文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)