手机版

生物合成材料聚β-羟基丁酸(PHB)的研究进展

发布时间:2024-09-25   来源:未知    
字号:

材料工程论文

生物合成材料聚β-羟基丁酸(PHB)的研究进展


摘要:聚β-羟基丁酸(PHB)是许多原核微生物在碳、氮营养失衡的情况下作为能量和碳源储藏在生物体内的一类热塑性聚酯。作为完全可生物降解材料,PHB越来越引起人们的关注。有力文章主要阐述了国内外PHB合成方法、性能改良、降解等方面的进展,并对其发展前景作出展望。
  关键词:PHB;生物降解材料;生物合成;改良;降解

  
  随着石油化学工业的发展,化学合成塑料的使用越来越广泛,作为合成高分子材料,化学合成塑料在自然环境下难以分解,造成了严重的“白色污染”。过去对废旧塑料的处理办法主要是土埋和焚烧,土埋浪费大量的土地,焚烧则会产生大量的二氧化碳及其它对人有害的氮、硫、磷、卤素等化合物,助长了温室效应及酸雨的形成。面对日益严峻的资源和环境问题,走可持续发展道路,就要研究开发可自然降解的新材料。PHB是微生物合成型降解材料中的典型代表,具有良好的生物降解性,分解产物可全部为生物利用,目前研究较为深入并初步进入商品化阶段。
  
  1PHB的性质
  
  聚羟基丁酸酯PHB,作为一种天然高分子聚合物,具有生物相容性、生物可降解性、无刺激性、无免疫原性和组织相容性等特殊性能,在组织工程、药物缓释控释系统、骨科以及医用手术缝合线领域获得成功的应用。PHB有良好的生物降解性,其分解产物可全部为生物利用,对环境无任何污染;其熔融温度为175~180℃,是一种可完全分解的热塑性塑料。它的物理性质和分子结构与聚丙烯(PP)很类似,如摩尔质量、软化点、结晶度、拉伸强度等,目前主要应用于医疗、工业、包装、农业等领域。
  
  2PHB的生物合成
  
  PHB的生物合成途径有微生物发酵法,转基因植物法。
  2.1微生物发酵
  微生物发酵生产是获得生物可降解塑料的主要途径,近30年大量的研究工作集中于发酵工艺的改进和高效菌株的筛选来提高PHA的容积产率和胞内含量。最近利用污水处理系统中的活性污泥合成PHB,大大降低了底物成本且无需灭菌操作,大大降低了成本,吸引了广泛的关注。
  2.1.1细菌发酵合成PHB工艺改良
  到目前为止,已发现100种以上的细菌能够生产PHB。通常,在自然环境中微生物能储备干燥菌体质量5%~20%的
PHB。在合适的条件,如碳源过量、限制氮、磷等发酵条件下,PHB含量可以达到细胞干重的70%~80%自然界中许多属、种的细菌在细胞内都能积累PHB颗粒,如产碱杆菌、甲基营养菌及鞘细菌等。于平、励建荣等在相关研究文献[1]中指出真养产碱杆菌发酵生产聚β-羟基丁酸(PHB)的最优化培养基组成

材料工程论文

和培养条件为:葡萄糖4.0%,硫酸铵0.3%,pH7.2,装液量80mL/250mL,接种量10%,PHB的质量浓度达到最高值0.825g/L,细胞干重为1.734g/L。鞘细菌对环境的适应能力较强,且有研究表明,其细胞内的PHB贮存比例较高。全桂静和程文辉[2]通过实验表明:以甘油和蛋白胨为碳源和氮源,适宜条件下100mL发酵液的PHB产量最高可达10.58mg。
  2.1.2筛选高效菌种
  国内外对于高效菌种的选育主要有构建基因工程菌法和紫外线诱变法。1987年,吉利亚James Madison大学的Dennis成功地从A.eutrophus中克隆到合成PHB的基因,并转入E.coil中构建成重组E.coil突变株,其细胞比正常细菌细胞大10倍,该菌株可以直接利用各种碳源,如葡萄糖、蔗糖、乳糖、木糖等廉价底物,进一步降低了成本。奥地利维也纳大学在组建工程大肠杆菌的同时引入热敏噬菌体溶解基因,可使细菌易裂解释放PHB,这一成果的最大特点是可降低提取成本,为推向市场打下基础。在国内也有一些紫外诱变法筛选优良菌株的研究,使原始菌株PHB产量得到很大的提高,如国家重点基础研究发展计划项目中徐爱玲、张帅等采用紫外线照射和放射性元素钴60辐射诱变方法,对Acidiphilium cryptum DX1-1进行了诱变改良,诱变后筛选得到的一株菌UV60-3,PHB含量达到28.56g/L,是原菌株的1.45倍,并且可稳定遗传。对菌株UV60-3积累PHB的碳氮比进行了探索,结果显示在碳源浓度60g/L,氮源浓度30 g/L,C/N为3.76时PHB含量最高,PHB含量达到30.57g/L。[3]
  2.1.3活性污泥合成PHB
  利用活性污泥的混合碳源与微生物群合成PHB 是生物合成PHB 的一条新途径,既处理了污水,又降低了合成费用,而且得到的产物其性能比单一菌株在纯碳源培养得到的PHB要优越。在污水处理过程中,活性污泥微生物常常将可快速降解的碳源物质贮存为PHA,而不是首先将它们用于生物量的增长,因此,可以通过适当的工艺调控将活性污泥驯化为PHA的生产者。日本东京大学的Satoh.H. 研究小组发现采用“微嗜气2好气”供气过程可以提高PHB在污泥中的产量,[4、5]表明了工艺过程、营养组成及条件控制影响PHAs的产率。中国科学院生态环境研究中心曲波、刘俊新在活性污泥合成可生物降解塑料PHB的工艺优化研究中结果中表明——溶解氧(DO)浓度、pH值和底物-生物量比(food-microorganism ratio,F/M)是对PHB生产影响的关键参数底物的吸收速率、PHB产率和胞内含量均随溶解氧浓度的提高
而提高,本研究最优操作条件下获得的PHB 含量已经接近纯培养方法所获得的典型的PHB 含量,展现了活性污泥合成PHB 的应用前景。[6]
  2.2转基因植物法
  由于PHB的高成本生产和生物技术的进步,人们开始将注意力转移到用转基因植物来生产PHB,1992年,Poirier

材料工程论文

首先探讨了用植物生产PHB的可行性,在拟南芥细胞质中定向合成PHB但是拟南芥的生长却受到抑制,把细菌PHB生物合成的途径定位于质体中,PHB占叶子干重的40%,但发现了植物生长和PHB含量有负关系。John等对用转基因棉花合成PHB做了尝试。转基因棉花纤维的长度,强度都正常,但其绝缘性能却提高了。热性能改变很小,可能是因为只有很少量的PHB在纤维细胞的细胞质中(占纤维重的0.34%)[7]王潮岗、胡章立以莱茵衣藻(Chlamydomonas reinhardtii)作为受体材料,将合成的相关酶基因phbB和phbC导入衣藻中,实现了PHB在胞质中的合成,但含量较少。
  
  3PHB性能的改良
  
  PHB是一种全同立构结晶性的聚酯,结晶度高达80%,常温及玻璃化温度(4℃)下表现为脆性,耐冲击性能较差;加工成型只能在190℃附近的一个狭窄的温度区间内进行,且熔融状态极不稳定,易发生降解。这些缺点使其无法作为一种实用的塑料使用,同时也限制了在降解材料方面的应用。PHB改性主要体现在增韧和增塑改性,PHB增韧主要通过弹力体、聚乙二醇(PEO)、淀粉等与之共混改性,文献报道的有效增塑剂有低相对分子质量PEO、柠檬酸三丁(三乙)酯、三乙酸(丁酸)甘油酯、ESO等从改良途径讲主要有物理共混、化学改性、生物改性。
  
  4PHB的降解
  
  PHB的生物降解归因于许多细菌和真菌能够分泌胞外PHB解聚酶PHB在解聚酶的作用下得到3-羟基丁酸,经过三羟基丁酸脱氢酶、乙酰乙酰辅酶和β-酮硫解酶作用下依次得到三羟基丁酸、乙酰乙酰辅酶A、乙酰辅酶A最后进入TCA循环。
 国外从60年代陆续开展了有关降解PHB的工作,但绝大部分菌株是近些年来获得的。1963年Chowdhury首次发现降解PHB的微生物,它们是Bacillus,Seudomonas和Streptomyces,随后人们陆续动环境中分离出其他一些能降解PHB的微生物类型。直接用从自然界中筛选的菌种产生的PHB降解酶的活性比较低,降解PHB的速度比较缓慢。近几年有许多学者通过紫外线诱变获得了高产PHB的菌株。次素琴、陈珊等以降解聚2β羟基丁酸酯(PHB)的青霉(Penicillium sp1)DS9713a为出发菌株,通过紫外线(UV)诱变分生孢子,采用透明圈初筛和摇瓶复筛,获得酶活高于原始菌株的突变株5株,其中DS9713a-CS01突变株的PHB解聚酶活力高于对照97.42%。[8]中国科学院研究所戴美学等根据苜蓿根瘤菌(Sinorhizobium meliloti)Rm1021基因组中与Ralstonia eutropha phaZ基因同源部分序列设计1对引物,从S.
meliloti基因组中用PCR扩增出835bp phbD基因片段并克隆到载体PGEM○R-T Easy上;通过在phbD 基因内插入ΩSmSp和基因置换构建了phbD突变体。该突变体可积累比野生型菌株多1.0~2.6倍的聚羟丁酶。[9]
  
  5展 望
  
  P

材料工程论文

HB作为最具代表性的一类生物塑料,具有良好的生物相容性和生物降解性。但是由于其生产菌的产量不高,生产菌在生长过程中所消耗的原料价格较高,天然产物的机械性能差,很多降解菌不能降解胞外的PHB等缺点影响了其使用,近年来,有大量的学者对此进行研究并取得了很大的进展。在能源与经济、环保相协调的今天,随着科技的进步,人们环保意识的增强,PHB将就有广阔的前景。
  
  参考文献
  1 于 平、励建荣.真养产碱杆菌发酵生产PHB的培养条件优化[J].中国食品学报,2007.1:61~63
  2 全桂静、程文辉.鞘细菌液体发酵生产PHB的研究[J].沈阳化工学院学报,2008.22(4):312~315
  3 徐爱玲、张 帅等.积累PHB菌种隐藏嗜酸菌DX1-1的诱变改良[J].微生物学通报,2008.35(10):1516~1521
  4 Satoh H, Iwamoto Y, Matsuo T.PHA production by acti2vated sludge[J].International Journal of Biological Macro2molecules, 1999. 25(1~3): 1052109
  5 Satoh H, Iwamoto Y, Matsuo T.Activated sludge as a pos2 sible source of biodegradable plastic [J].Wat. Sci. Tech, 1998. 38(2): 1032109
  6 曲 波、刘俊新.活性污泥合成可生物降解塑料PHB的工艺优化研究[J].科学通报,2008.53.13:1598~1604
  7 王述彬、刑侦琦等.用基因植物生产生物可降解塑料的研究进展[J].研究与进展,2005
.5:33~35
  8 次素琴、陈 珊等.紫外线诱变选育高产PHB解聚酶的菌株[J].微生物学通报,2005.32:38~43
  9 戴美学、武 波等.苜蓿根瘤菌聚羟丁酸解聚酶基因JK3LM,N突变体的构建及其特性[J].农业生物技术学报,2003.11:115~120

生物合成材料聚β-羟基丁酸(PHB)的研究进展.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
    ×
    二维码
    × 游客快捷下载通道(下载后可以自由复制和排版)
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    VIP包月下载
    特价:29 元/月 原价:99元
    低至 0.3 元/份 每月下载150
    全站内容免费自由复制
    注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
    × 常见问题(客服时间:周一到周五 9:30-18:00)