第二章 第13节 第一课时
1.(导学号14577225)(2018·银川市模拟)设f (x )=x ln x +ax 2,a 为常数.
(1)若曲线y =f (x )在x =1处的切线过点A (0,-2),求实数a 的值;
(2)若f (x )有两个极值点x 1,x 2且x 1<x 2
①求证:-12
<a <0 ②求证:f (x 2)>f (x 1)>-12
. 解:(1)f (x )=x ln x +ax 2的导数为f ′(x )=ln x +1+2ax ,
在x =1处的切线斜率为k =1+2a ,切点为(1,a ),
在x =1处的切线过点A (0,-2),则k =1+2a =a +2,
解得a =1;
(2)证明:①由题意可得f ′(x )=0有两个不等的实根x 1,x 2,且0<x 1<x 2,
设g (x )=ln x +1+2ax ,g ′(x )=1x
+2a ,x >0. 当a ≥0,则g ′(x )>0,g (x )在(0,+∞)递增,不合题意;
当a <0时,g ′(x )>0解得x <-12a ,g ′(x )<0解得x >-12a
, 即有g (x )在⎝⎛⎭⎫0,-12a 递增,在⎝⎛⎭
⎫-12a ,+∞递减. 即有g ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a >0,解得-12
<a <0; ②由上可知,f (x )在(x 1,x 2)递增,即有f (x 2)>f (x 1),
f ′(1)=
g (1)=1+2a >0,则x 1∈(0,1),由①可得ax 1=
-1-ln x 12, 即有f (x 1)=x 1ln x 1+ax 21=12
(x 1ln x 1-x 1), 设h (x )=12
(x ln x -x ),0<x <1, h ′(x )=12
ln x <0在(0,1)恒成立, 故h (x )在(0,1)递减,故h (x )>h (1)=-12
, 由此可得f (x 1)>-12
, 综上可得f (x 2)>f (x 1)>-12
.1.(导学号14577225)(2018·银川市模拟)设f (x )=x ln x +ax 2,a 为常数.
(1)若曲线y =f (x )在x =1处的切线过点A (0,-2),求实数a 的值;
(2)若f (x )有两个极值点x 1,x 2且x 1<x 2
①求证:-12
<a <0 ②求证:f (x 2)>f (x 1)>-12
. 解:(1)f (x )=x ln x +ax 2的导数为f ′(x )=ln x +1+2ax ,
在x =1处的切线斜率为k =1+2a ,切点为(1,a ),
在x =1处的切线过点A (0,-2),则k =1+2a =a +2,
解得a =1;
(2)证明:①由题意可得f ′(x )=0有两个不等的实根x 1,x 2,且0<x 1<x 2,
设g (x )=ln x +1+2ax ,g ′(x )=1x
+2a ,x >0. 当a ≥0,则g ′(x )>0,g (x )在(0,+∞)递增,不合题意;
当a <0时,g ′(x )>0解得x <-12a ,g ′(x )<0解得x >-12a
, 即有g (x )在⎝⎛⎭⎫0,-12a 递增,在⎝⎛⎭
⎫-12a ,+∞递减. 即有g ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a >0,解得-12
<a <0; ②由上可知,f (x )在(x 1,x 2)递增,即有f (x 2)>f (x 1),
f ′(1)=
g (1)=1+2a >0,则x 1∈(0,1),由①可得ax 1=
-1-ln x 12, 即有f (x 1)=x 1ln x 1+ax 21=12
(x 1ln x 1-x 1), 设h (x )=12
(x ln x -x ),0<x <1, h ′(x )=12
ln x <0在(0,1)恒成立, 故h (x )在(0,1)递减,故h (x )>h (1)=-12
, 由此可得f (x 1)>-12
, 综上可得f (x 2)>f (x 1)>-12
. 2.(导学号14577226)已知函数f (x )=x ln x +mx (m ∈R )的图象在点(1,f (1))处的切线的斜率为2.
(1)求实数m 的值;
(2)设g (x )=f (x )-x x -1
,讨论g (x )的单调性;
(3)已知m ,n ∈N *且m >n >1,证明m
n n m >n m . 解:(1)因为f (x )=x ln x +mx ,所以f ′(x )=1+ln x +m .
由题意f ′(1)=1+ln 1+m =2,得m =1.
(2)g (x )=f (x )-x x -1=x ln x x -1
(x >0,x ≠1), 所以g ′(x )=x -1-ln x (x -1)2
. 设h (x )=x -1-ln x ,h ′(x )=1-1x
. 当x >1时,h ′(x )=1-1x
>0,h (x )是增函数, h (x )>h (1)=0,
所以g ′(x )=x -1-ln x (x -1)2
>0, 故g (x )在(1,+∞)上为增函数;
当0<x <1时,h ′(x )=1-1x
<0,h (x )是减函数, h (x )>h (1)=0,
所以g ′(x )=x -1-ln x (x -1)2
>0,故g (x )在(0,1)上为增函数; 所以g (x )在区间(0,1)和(1,+∞)上都是单调递增的. (3)证明:由已知可知要证m n n m >n m , 即证ln n m -ln m n
>ln n -ln m , 即证n -1n ln m >m -1m
ln n , 即证m ln m m -1>n ln n n -1
,即证g (m )>g (n ), 又m >n >1(m ,n ∈N *),由(2)知g (m )>g (n )成立,所以m n n m >n m . 3.(导学号14577227)(理科)函数f (x )=ln(x +m )-n ln x .
(1)当m =1,n >0时,求f (x )的单调减区间;
(2)n =1时,函数g (x )=(m +2x )f (x )-am ,若存在m >0,使得g (x )>0恒成立,求实数a 的取值范围.
解:(1)f (x )=ln(x +1)-n ln x ,定义域为(0,+∞),f ′(x )=1x +1-n x =(1-n )x -n x (x +1)
, ①当n =1时,f ′(x )=-1x (x +1)
<0,此时f (x )的单调减区间为(0,+∞); ②当0<n <1时,0<x <n 1-n
时,f ′(x )<0,此时f (x )的单调减区间为⎝⎛⎭⎫0,n 1-n ; ③当n >1时,x >n 1-n
时,f ′(x )<0,此时减区间为⎝⎛⎭⎫n 1-n ,+∞. (2)n =1时,g (x )=(m +2x )[ln(x +m )-ln x ]-am ,
∵g (x )>0,∴g (x )x >0,即⎝⎛⎭⎫m +x x +1ln m +x x -a ⎝⎛⎭⎫m +x x -1>0,
设m +x x =t >1,∴(t +1)ln t -a (t -1)>0,∴ln t -a (t -1)t +1
>0. 设h (t )=ln t -a (t -1)t +1,h ′(t )=t 2+2(1-a )t +1t (t +1)2
,h (1)=0, ①当a ≤2时,t 2+2(1-a )t +1≥t 2-2t +1>0,故h ′(t )>0,∴h (t )在(1,+∞)上单调递增,因此h (t )>0;
②当a >2时,令h ′(t )=0,得:t 1=a -1-(a -1)2-1,t 2=a -1+(a -12)-1,由t 2>1和t 1t 2=1,得:t 1<1,故h (t )在(1,t 2)上单调递减,此时h (t )<h (1)=0.综上所述,a ≤2.
3.(文科)(2018·西安市三模)已知函数f (x )=x 2+6ax +1,g (x )=8a 2ln x +2b +1,其中a >0.
(1)设两曲线y =f (x ),y =g (x )有公共点,且在该点处的切线相同,用a 表示b ,并求b 的最大值;
(2)设h (x )=f (x )+g (x ),证明:若a ≥1,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有h (x 2)-h (x 1)x 2-x 1
>14. 解:(1):设f (x )与g (x )的图象交于点P (x 0,y 0)(x 0>0),
则有f (x 0)=g (x 0),
即x 20+6ax 0+1=8a 2ln x 0+2b +1 ①
又由题意知f ′(x 0)=g ′(x 0),即2x 0+6a =8a 2
x 0
②, 由②解得x 0=a 或x 0=-4a (舍去),
将x 0=a 代入①整理得b =72
a 2-4a 2ln a , 令K (a )=72
a 2-4a 2ln a ,则K ′(a )=a (3-8ln a ), 当a ∈⎝⎛⎭⎫0,8e 3时,K (a )单调递增,当a ∈⎝⎛⎭⎫8e 3,+∞时K (a )单调递减,
所以K (a )≤K (8e 3)=2e 34,即b ≤2e 34
, b 的最大值为2e 34
; (2)证明:不妨设x 1,x 2∈(0,+∞),
x 1<x 2,h (x 2)-h (x 1)x 2-x 1
>14, 变形得h (x 2)-14x 2>h (x 1)-14x 1,
令T (x )=h (x )-14x ,T ′(x )=2x +8a 2x
+6a -14, ∵a ≥1,T ′(x )=2x +8a 2x
+6a -14≥8a +6a -14≥0, 则T (x )在(0,+∞)上单调递增,T (x 2)>T (x 1),
即h (x 2)-h (x 1)x 2-x 1
>14成立, 同理可证,当x 1>x 2时,命题也成立.
综上,对任意x 1,x 2∈(0,+∞),x 1≠x 2,
不等式h (x 2)-h (x 1)x 2-x 1
>14成立. 4.(导学号14577229)(理科)(2018·大庆市一模)已知函数f (x )=ln (x +a )-x 2-x 在x =0处取得极值.
(1)求函数f (x )的单调区间;
(2)若关于x 的方程f (x )=-52
x +b 在区间(0,2)有两个不等实根,求实数b 的取值范围; (3)对于n ∈N *,证明:212+322+432+…+n +1n 2>ln(n +1). 解:(1)由已知得f ′(x )=1x +a -2x -1=1-2x (x +a )-(x +a )x +a
, ∵f ′(0)=0,∴1-a a
=0, ∴a =1.
∴f (x )=ln (x +1)-x 2-x (x >-1),
于是f ′(x )=1-2x (x +1)-(x +1)x +1=-2x ⎝⎛⎭⎫x +32x +1
(x >-1), 由f ′(x )>0得-1<x <0;由f ′(x )<0,得x >0,
∴f (x )的单调递增区间是(-1,0),单调递减区间是(0,+∞).
(2)令g (x )=f (x )-⎝⎛⎭⎫-52x +b =ln (x +1)-x 2+32
x -b ,x ∈(0,2),
则g ′(x )=1x +1-2x +32=-4x 2+x -52(x +1)
,令g ′(x )=0,得x =1或x =-54(舍去). 当0<x <1时,g ′(x )>0;当1<x <2时g ′(x )<0,
即g (x )在(0,1)上单调递增,在(1,2)上单调递减.
方程f (x )=-52
x +b 在区间(0,2)有两个不等实根等价于函数g (x )在(0,2)上有两个不同的零点.
∴⎩⎪⎨⎪⎧ g (0)<0g (1)>0g (2)<0,即⎩⎪⎨⎪⎧ -b <0ln 2+12-b >0
ln 3-1-b >0;亦即⎩⎪⎨⎪⎧ b >0b <ln 2+12b >ln 3-1,
∴ln 3-1<b <ln 2+12
, 故所求实数b 的取值范围为
⎩
⎨⎧⎭⎬⎫b |ln 3-1<b <ln 2+12. (3)证明:由(1)可得,当x ≥0时ln (x +1)≤x 2+x (当且仅当x =0时等号成立).
设x =1n ,则ln ⎝⎛⎭⎫1+1n <1n 2+1n ,即ln n +1n <n +1n 2 ① ∴2212>ln 21,322>ln 32,432>ln 43,…,n +1n 2>ln n +1n
, 将上面n 个式子相加得:
2212+322+432+…+n +1n 2>ln 21+ln 32+ln 43+…+ln n +1n
=ln (n +1), 故212+322+432+…+n +1n 2>ln(n +1) 4.(导学号14577230)(文科)(2018·天津河北区三模)已知函数f (x )=ax +b -ln x 表示的曲线在点(2,f (2))处的切线方程x -2y -2ln 2=0
(1)求a ,b 的值;
(2)若f (x )≥kx -2对于x ∈(0,+∞)恒成立,求实数k 的取值范围;
(3)求证:n ∈N *
时,n (n +1)≤2e n -1e -1. 解:(1)函数f (x )=ax +b -ln x 的导数为f ′(x )=a -1x
,在点(2,f (2))处的切线方程x -2y -2ln 2=0,
即有a -12=12
,解得a =1, f (2)=2a +b -ln 2=1-ln 2,解得b =-1,
则有a =1,b =-1;
(2)f (x )≥kx -2对于x ∈(0,+∞)恒成立,即有
x -1-ln x ≥kx -2对于x ∈(0,+∞)恒成立,
即有k -1≤1-ln x x
对于x ∈(0,+∞)恒成立. 令g (x )=1-ln x x ,g ′(x )=ln x -2x 2
, 当x >e 2时,g ′(x )>0,g (x )递增;
当0<x <e 2时,g ′(x )<0,g (x )递减.
则x =e 2处g (x )取得极小值,也为最小值,且为-1e 2, 即有k -1≤-1e 2,解得k ≤1-1e 2; (3)证明:f (x )=x -1-ln x (x >0),
f ′(x )=1-1x
, 当x >1时,f ′(x )>0,f (x )递增,
当0<x <1时,f ′(x )<0,f (x )递减.
则x =1处f (x )取得极小值,也为最小值,且为0,
则有f (x )≥0,
即为x -1≥ln x ,
取x =n ,则n -1≥ln n ,
即有n ≤e n -
1. 即有1+2+…+n ≤1+e +e 2+…+e n -
1. 则有12n (n +1)≤1-e n 1-e
, 即有n ∈N *
时,n (n +1)≤2e n -1e -1.
2.(导学号14577226)已知函数f (x )=x ln x +mx (m ∈R )的图象在点(1,f (1))处的切线的斜率为2.
(1)求实数m 的值;
(2)设g (x )=f (x )-x x -1
,讨论g (x )的单调性; (3)已知m ,n ∈N *且m >n >1,证明m
n n m >n m . 解:(1)因为f (x )=x ln x +mx ,所以f ′(x )=1+ln x +m .
由题意f ′(1)=1+ln 1+m =2,得m =1.
(2)g (x )=f (x )-x x -1=x ln x x -1
(x >0,x ≠1), 所以g ′(x )=x -1-ln x (x -1)2
. 设h (x )=x -1-ln x ,h ′(x )=1-1x
. 当x >1时,h ′(x )=1-1x
>0,h (x )是增函数, h (x )>h (1)=0,
所以g ′(x )=x -1-ln x (x -1)2
>0, 故g (x )在(1,+∞)上为增函数;
当0<x <1时,h ′(x )=1-1x
<0,h (x )是减函数, h (x )>h (1)=0,
所以g ′(x )=x -1-ln x (x -1)2
>0,故g (x )在(0,1)上为增函数; 所以g (x )在区间(0,1)和(1,+∞)上都是单调递增的.
(3)证明:由已知可知要证m n n m >n m , 即证ln n m -ln m n
>ln n -ln m , 即证n -1n ln m >m -1m
ln n , 即证m ln m m -1>n ln n n -1
,即证g (m )>g (n ), 又m >n >1(m ,n ∈N *),由(2)知g (m )>g (n )成立,所以m n n m >n m . 3.(导学号14577227)(理科)函数f (x )=ln(x +m )-n ln x .
(1)当m =1,n >0时,求f (x )的单调减区间;
(2)n =1时,函数g (x )=(m +2x )f (x )-am ,若存在m >0,使得g (x )>0恒成立,求实数a 的取值范围.
解:(1)f (x )=ln(x +1)-n ln x ,定义域为(0,+∞),f ′(x )=1x +1-n x =(1-n )x -n x (x +1)
, ①当n =1时,f ′(x )=-1x (x +1)
<0,此时f (x )的单调减区间为(0,+∞);
②当0<n <1时,0<x <n 1-n
时,f ′(x )<0,此时f (x )的单调减区间为⎝⎛⎭⎫0,n 1-n ; ③当n >1时,x >n 1-n
时,f ′(x )<0,此时减区间为⎝⎛⎭⎫n 1-n ,+∞. (2)n =1时,g (x )=(m +2x )[ln(x +m )-ln x ]-am ,
∵g (x )>0,∴g (x )x >0,即⎝⎛⎭⎫m +x x +1ln m +x x -a ⎝⎛⎭⎫m +x x -1>0,
设m +x x =t >1,∴(t +1)ln t -a (t -1)>0,∴ln t -a (t -1)t +1
>0. 设h (t )=ln t -a (t -1)t +1,h ′(t )=t 2+2(1-a )t +1t (t +1)2
,h (1)=0, ①当a ≤2时,t 2+2(1-a )t +1≥t 2-2t +1>0,故h ′(t )>0,∴h (t )在(1,+∞)上单调递增,因此h (t )>0;
②当a >2时,令h ′(t )=0,得:t 1=a -1-(a -1)2-1,t 2=a -1+(a -12)-1,由t 2>1和t 1t 2=1,得:t 1<1,故h (t )在(1,t 2)上单调递减,此时h (t )<h (1)=0.综上所述,a ≤2.
3.(文科)(2018·西安市三模)已知函数f (x )=x 2+6ax +1,g (x )=8a 2ln x +2b +1,其中a >0.
(1)设两曲线y =f (x ),y =g (x )有公共点,且在该点处的切线相同,用a 表示b ,并求b 的最大值;
(2)设h (x )=f (x )+g (x ),证明:若a ≥1,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有h (x 2)-h (x 1)x 2-x 1
>14. 解:(1):设f (x )与g (x )的图象交于点P (x 0,y 0)(x 0>0),
则有f (x 0)=g (x 0),
即x 20+6ax 0+1=8a 2ln x 0+2b +1 ①
又由题意知f ′(x 0)=g ′(x 0),即2x 0+6a =8a 2
x 0
②, 由②解得x 0=a 或x 0=-4a (舍去),
将x 0=a 代入①整理得b =72
a 2-4a 2ln a , 令K (a )=72
a 2-4a 2ln a ,则K ′(a )=a (3-8ln a ), 当a ∈⎝⎛⎭⎫0,8e 3时,K (a )单调递增,当a ∈⎝⎛⎭
⎫8e 3,+∞时K (a )单调递减, 所以K (a )≤K (8e 3)=2e 34,即b ≤2e 34
, b 的最大值为2e 34
;
(2)证明:不妨设x 1,x 2∈(0,+∞),
x 1<x 2,h (x 2)-h (x 1)x 2-x 1
>14, 变形得h (x 2)-14x 2>h (x 1)-14x 1,
令T (x )=h (x )-14x ,T ′(x )=2x +8a 2x
+6a -14, ∵a ≥1,T ′(x )=2x +8a 2x
+6a -14≥8a +6a -14≥0, 则T (x )在(0,+∞)上单调递增,T (x 2)>T (x 1),
即h (x 2)-h (x 1)x 2-x 1
>14成立, 同理可证,当x 1>x 2时,命题也成立.
综上,对任意x 1,x 2∈(0,+∞),x 1≠x 2,
不等式h (x 2)-h (x 1)x 2-x 1
>14成立. 4.(导学号14577229)(理科)(2018·大庆市一模)已知函数f (x )=ln (x +a )-x 2-x 在x =0处取得极值.
(1)求函数f (x )的单调区间;
(2)若关于x 的方程f (x )=-52
x +b 在区间(0,2)有两个不等实根,求实数b 的取值范围; (3)对于n ∈N *,证明:212+322+432+…+n +1n 2>ln(n +1). 解:(1)由已知得f ′(x )=1x +a -2x -1=1-2x (x +a )-(x +a )x +a
, ∵f ′(0)=0,∴1-a a
=0, ∴a =1.
∴f (x )=ln (x +1)-x 2-x (x >-1),
于是f ′(x )=1-2x (x +1)-(x +1)x +1=-2x ⎝⎛⎭⎫x +32x +1
(x >-1), 由f ′(x )>0得-1<x <0;由f ′(x )<0,得x >0,
∴f (x )的单调递增区间是(-1,0),单调递减区间是(0,+∞).
(2)令g (x )=f (x )-⎝⎛⎭⎫-52x +b =ln (x +1)-x 2+32
x -b ,x ∈(0,2), 则g ′(x )=1x +1-2x +32=-4x 2+x -52(x +1)
,令g ′(x )=0,得x =1或x =-54(舍去). 当0<x <1时,g ′(x )>0;当1<x <2时g ′(x )<0,
即g (x )在(0,1)上单调递增,在(1,2)上单调递减.
方程f (x )=-52
x +b 在区间(0,2)有两个不等实根等价于函数g (x )在(0,2)上有两个不同的零点.
∴⎩⎪⎨⎪⎧ g (0)<0g (1)>0g (2)<0,即⎩⎪⎨⎪⎧ -b <0ln 2+12-b >0
ln 3-1-b >0;亦即⎩⎪⎨⎪⎧ b >0b <ln 2+12b >ln 3-1,
∴ln 3-1<b <ln 2+12
, 故所求实数b 的取值范围为
⎩
⎨⎧⎭⎬⎫b |ln 3-1<b <ln 2+12. (3)证明:由(1)可得,当x ≥0时ln (x +1)≤x 2+x (当且仅当x =0时等号成立).
设x =1n ,则ln ⎝⎛⎭⎫1+1n <1n 2+1n ,即ln n +1n <n +1n 2 ① ∴2212>ln 21,322>ln 32,432>ln 43,…,n +1n 2>ln n +1n
, 将上面n 个式子相加得:
2212+322+432+…+n +1n 2>ln 21+ln 32+ln 43+…+ln n +1n
=ln (n +1), 故212+322+432+…+n +1n 2>ln(n +1) 4.(导学号14577230)(文科)(2018·天津河北区三模)已知函数f (x )=ax +b -ln x 表示的曲线在点(2,f (2))处的切线方程x -2y -2ln 2=0
(1)求a ,b 的值;
(2)若f (x )≥kx -2对于x ∈(0,+∞)恒成立,求实数k 的取值范围;
(3)求证:n ∈N *
时,n (n +1)≤2e n -1e -1. 解:(1)函数f (x )=ax +b -ln x 的导数为f ′(x )=a -1x
,在点(2,f (2))处的切线方程x -2y -2ln 2=0,
即有a -12=12
,解得a =1, f (2)=2a +b -ln 2=1-ln 2,解得b =-1,
则有a =1,b =-1;
(2)f (x )≥kx -2对于x ∈(0,+∞)恒成立,即有
x -1-ln x ≥kx -2对于x ∈(0,+∞)恒成立,
即有k -1≤1-ln x x
对于x ∈(0,+∞)恒成立.
令g (x )=1-ln x x ,g ′(x )=ln x -2x 2
, 当x >e 2时,g ′(x )>0,g (x )递增;
当0<x <e 2时,g ′(x )<0,g (x )递减.
则x =e 2处g (x )取得极小值,也为最小值,且为-1e 2, 即有k -1≤-1e 2,解得k ≤1-1e 2; (3)证明:f (x )=x -1-ln x (x >0),
f ′(x )=1-1x
, 当x >1时,f ′(x )>0,f (x )递增,
当0<x <1时,f ′(x )<0,f (x )递减.
则x =1处f (x )取得极小值,也为最小值,且为0, 则有f (x )≥0,
即为x -1≥ln x ,
取x =n ,则n -1≥ln n ,
即有n ≤e n -
1. 即有1+2+…+n ≤1+e +e 2+…+e n -
1. 则有12n (n +1)≤1-e n 1-e
, 即有n ∈N *
时,n (n +1)≤2e n -1e -1.