英语原文科技英语文献翻译材料原文分享下载
Branaganetal.DevelopingBMNintoindustrialproducts
aboilertubecoatingappliedinpowerplant;bweldoverlayhardfacing/hardbandingontooljoint;cweldoverlayhardfa-cingappliedtolargeshoveldipper;dwearplateinhaultruckbedliners
4ExamplesofindustrialproductsbasedonsurfacetechnologyapplicationofBMN
glassesdoexhibitaroomtemperaturedeformationmechanism;however,whenexposedtoatensileload,itexperiencescatastrophicfailureduetoshearbandfor-mation,freevolumecreation,shearsofteningandrunawayshearpropagation.5Recently,wehavereportedaspeci cstructuretypecalledaSGMMstructure,whichhastheabilitytodeformwithoutrunawayshearpro-pagationresultingintheachievementofsigni cantlevelsofglobalplasticityandusableductility.21–24
ThestructuralformationmodelfortheSGMMstructurerequiredformonolithictechnologyisshowninFig.5.Thekeytoformingthisenablingstructureisasolidi cationpathwaywherebyglassdevitri cationisavoided,whichisshownbythecoolingcurvesmissingthenoseoftheglassdevitri cationtransformation.Thisisbecauseglassdevitri cation,whetherornotitisper-formedinsingleormultiplestages,orwhetherinvolvingrecovery,relaxationorrecrystallisation,resultsinthecreationofbrittlestructures.Theglassformingnatureofthealloyisparamounttoformasupersaturatedglassmatrixduetothehighsolubilityofelementsinthemetallicglassstructure.Keytosubsequenttransformationistheabilityofthemulticomponentalloytoexhibiteitherastableormetastablemiscibilitygapatasuf cientlylowtemperaturerangetoallowtransformationinametallicglassmatrixthroughspinodaldecomposition.Unlikedevitri cation,spinodaltransformationisnotnucleationcontrolledbutinsteadinvolvesphaseseparationfromfreeenergydrivencompositionalgradientsduetothepresenceofeitherastableormetastablemiscibilitygap.Duringcooling,afterametallicglassisformed,thissupersaturatedsolutionthenundergoesspinodaldecompositiontocreateadistributionofvery nenanoscale(typically1–10nm)precipitatesintheglassmatrix.AsshowninFig.5,dependingonthecoolingrate,thespinodalstructurecanbeobservedtobehaveasexpectedforaspinodaldecompositiontransformation,andearlystage(CR4),middlestage(CR5)andlatestage(CR6)spinodalstructurescanbeobserved.Notethattheearlystagespinodalphasesareverysmallat,2nmandwheninitiallyformsappeartobesemicrystalline,butinlaterstages,oncetheycoarsengreaterthany6nmbecomecompletelycrystalline.
OncetheSGMMstructureisformed,ithastheuniqueabilitytodeformunderatensileload.InFig.6a,ahighdensityofshearbandscanbeobservedinasampleproducedwiththeSGMMstructureandthentensiletesteduntilfailure.Twotypesofinteractionsareobserved,whicharecalledinducedshearbandblunting(smallcircles)andshearbandarrestinginteractions(SBAI)(largecircles).21–24InFig.6b,additionaldetailsoftheinducedshearbandbluntingprocessareshownasapropagatingshearbandisinteractingwiththeSGMMstructureandisbluntedduetocomplexmultifoldinteractionsoftheshearbandwiththeSGMMstructurethroughlocaliseddeformationinducedchangesinclud-ingphasetransformation,phasegrowthandinsitunanocrystallisation.21–24InFig.6c,additionaldetailsoftheSBAIprocessareshown,whichshowthataftershearbandsarecreated,theyinteractwithexistingshearbandsandareoftensplitandbluntedafterashortdistance.Theresultistheformationofhighdensitiesofshearbandsupto105–106linespervolume,analogoustodislocationsincrystallinemetals,leadingtosigni -cantlevelsofglobalplasticity.
ThetargetedSGMMstructurehasbeensuccessfullyproducedinmanyproductformsincludingmicrowiresthroughTaylor–Ulitovskywireproduction, bresthroughvariationsofindustrialscalemeltspinningprocessesandfoilsthroughplanar owcasting.In
these
1196MaterialsScienceandTechnology2013
VOL
29
NO
10