数学物理方法
‘ÅÄ §moA ÆêÆÆ
Ñ
October 13, 2014
m
‘ÅÄ §
Ñ
数学物理方法
È©úª
Gauss-Greenúª: R n´±v 1w -¡ >. k.« ( ±´õëÏ ), u 34« ∪ þëY, 3 SkëYê. n ü{ . K uxi dx1··· dxn=
u cos(xi, n)ds .
(1)
m
‘ÅÄ §
Ñ
数学物理方法
È©úª
Newton-Leibnizúª
= (a, b ) R 1, K (2)
u (x )dx= u (b ) cos 0+ u (a) cosπ= u (b ) u (a).
m
‘ÅÄ §
Ñ
数学物理方法
È©úª
Newton-Leibnizúª
= (a, b ) R 1, K (2)
u (x )dx= u (b ) cos 0+ u (a) cosπ= u (b ) u (a).
Greenúª:
= D R 2, D=Γ, K (D
P Q )dxdy= x y
Pdx+ Qdy .Γ
(3)
m
‘ÅÄ §
Ñ
数学物理方法
Greenúª y²y²: dGauss-Greenúªk Q dxdy= x P dxdy= y Q cos(n, x )ds,Γ
D
P cos(n, y )dsΓ
D
Ïd (D
Q P )dxdy= x y
Q cos(n, x )ds ΓΓ
P cos(n, y )ds
Γ
τ, K cos(n, y )ds= cos(τ, x )ds= dx .
cos(n, x )ds= sin(τ, x )ds= dy,= Greenúª.m
‘ÅÄ §
Ñ
数学物理方法
È©úªGaussúª: R 3, u= P (x, y, z )i+ Q (x, y, z )j+ R (x, y, z )k, K div u dxdydz=
(
Q R P++ )dxdydz x y z P cos(n, x )+ Q cos(n, y )+ R cos(n, z )ds
=
=
Pdydz+
Qdxdz+
Rdxdy (4)
=
u· nds .
m
‘ÅÄ §
Ñ
数学物理方法
È©úªGaussúª: R 3, u= P (x, y, z )i+ Q (x, y, z )j+ R (x, y, z )k, K div u dxdydz=
(
Q R P++ )dxdydz x y z P cos(n, x )+ Q cos(n, y )+ R cos(n, z )ds
=
=
Pdydz+
Qdxdz+
Rdxdy (4)
=
u· nds .
Ñݽn:
R n, ¤áe¡'X div u dx=
u· nds .
(5)
m
‘ÅÄ §
Ñ
数学物理方法
È©úª
m
‘ÅÄ §
Ñ
数学物理方法
È©úª
©ÙÈ©úª: uxi vdx=
u v cos(n, xi )ds
u vxi dx .
(6)
y²: dGauss-Greenúªk (uv )xi dx=
u v cos(n, xi )ds .
5¿ (uv )xi dx=
u vxi dx+
uxi vdx .
= ©ÙÈ©úª.
m
‘ÅÄ §
Ñ
数学物理方法
È©úªGreen1 úª: u, v 9§ ¤k ê34« ∪ þëY.§ ¤kê3 SëY. K u vdx=
u
v ds n
u· vdx .
(7)
y²: 3Ñݽn¥^u v O u div (u v )dx=
u v· nds .
(8)
5¿ div (u v )= · (u v )= u· v+ u v,òþª“<(8)= .m‘ÅÄ §Ñ
v· n=
v . n
数学物理方法
È©úª
Green1úª: (u v v u )dx=
(u
u v v )ds . n n
(9)
y²:dGreen1 úª v udx=
v u· nds
v· udx .
(10)
(7) (10) = Green1úª.
m
‘ÅÄ §
Ñ
数学物理方法
‘
Ä §
Ñ
e¡· ±Ä ~0‘Ä §ïá.ùp0´ 5 N¡,· ‰±ebµ´þ!§§¡—Ý ~êρ (Ø”ρ≡ 1);þÝé§ À Ü-¡;²ï ?u ²¡S, þ‰ Ä;¤É P xoy u (x, y, t )²ï ¤?²¡þ:(x, y )?3 t£þ :3R T²¡
åF ²ï ¤3²¡R ; )?Û-|å.
´R^,§Ï
- u)/Cج
m
‘ÅÄ §
Ñ
数学物理方法
‘
Ä §
Ñ
éu ;ÜX, e§÷vþ¡Ä b, K3þ? :ÜåT ~ê.ù ,eLþ ½:P÷, l, KT ulüýÜ©©Oéué kü rÝ T .å, .å -¡{ R , q l R . íÄ §, 3þ? ¬ ,§3xoy²¡þÝ K ( ã1.10).±e5O 3 mã(t, t+ t )S ^u¬Àþ±9T mãSù ¬ÄþCz. k ^3 >.λþÜå. PΓτν s nλ3xoy²¡ÝK; Γ ;{ ;{ .
Γ ;
m
‘ÅÄ §
Ñ
数学物理方法
‘
Ä §
Ñ£^u (x, y, t ) L«,
ÜåT τ×ν —. § u= u (x, y, t ). -¡{ ν ±
( ux, uy, 1). sτ (cos(x, s), cos(y, s), 0). (cos(x, s), cos(y, s),¯¢þÏ τ s²1.τ u ). s
(cos(x, s), cos(y, s),η ). Kν⊥τ ν·τ= 0.=η= ux cos(x, s)+ uy cos(y, s)=m‘ÅÄ §Ñ
u . s
数学物理方法
‘
Ä §
Ñ
τ×ν
(α1,α2,α3 ),Ù¥α1= cos(y, s)+ u uy . s u ux . s
α2= cos(x, s)
α3= ux cos(y, s) uy cos(x, s)= ux cos(x, n)+ uy cos(y, n) u= . n
m
‘ÅÄ §
Ñ
数学物理方法
‘
Ä §
Ñ
¯¢þÏ τ×ν=Ú (y, s )= (x, n), (x, s )=π (y, n). dd ,Üå3R ©þ´ T|u= Tα32+α2+α2α1 2 3
i j cos(x, s ) cos(y, s ) ux uy
k u s
1
.
m
‘ÅÄ §
Ñ