流体的平衡微分方程及其积分
流体的平衡微分方程及其积分
一、流体平衡微分方程——欧拉平衡方程
如图所示,在平衡流体中取一微元六面体,边长分别为d x ,d y ,d z ,设中心点的压强为p (x,y,z )=p ,对其进行受力分析:
根据平衡条件,在x 方向有0F x
=∑,即: 0zX y z y x
p 21z y )21=+)+-((d dxd d d dx p d d dx x p p ρ∂∂∂∂- 01X =-x
p ∂∂ρ 式中:X ——单位质量力在x 轴的投影
流体平衡微分方程(即欧拉平衡微分方程): ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-
010101z p Z y p Y x p X ρρρ 物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量力分量彼此相等。 压强沿轴向的变化率(z p y p x p ∂∂∂∂∂∂,,)等于轴向单位体积上的质量力的分量(ρX ,ρY ,
流体的平衡微分方程及其积分
ρZ )。
二、平衡微分方程的积分
将欧拉平衡微分方程中各式,分别乘以dx 、dy 、dz ,整理: Zdz)Ydy (Xdx dz z
p dy y p x ++=∂∂+∂∂+∂∂ρdx p 因为p = p (x,y,z )
∴ Zdz)Ydy (Xdx dp ++=ρ ρ为常量; Xdx +Ydy +Zdz 应为某函数W =F (x ,y ,z )的全微分: dz z W dy y W dx x W dz dy dx d ∂∂+∂∂+∂∂=++=)Z Y (X W dW dp =ρ 平衡流体中压强p 的全微分方程 积分得:p=ρW +c
假定平衡液体自由面上某点(x 0,y 0,z 0)处的压强p 0及W 0为已知,则: c =p 0-ρW 0 ∴ p=p 0+ρ(W-W 0) 欧拉平衡微分方程的积分
三、帕斯卡定律
处于平衡状态下的不可压缩流体中,任意点M 处的压强变化值△p 0,将等值地传递到此平衡流体的其它各点上去。
说明:只适用于不可压缩的平衡流体;
盛装液体的容器是密封的、开口的均可。
四、等压面
平衡流体中压强相等的各点所组成的面。
等压面:dp =ρ(Xdx +Ydy +Zdz )=0
ρ为常量,则:Xdx +Ydy +Zdz =0
即:质量力在等压面内移动微元长度所作的功为零。 等压面的特征:平衡流体的等压面垂直于质量力的方向 只有重力作用下的等压面应满足的条件:
1.静止;
2.连通;
3.连通的介质为同一均质流体;
流体的平衡微分方程及其积分
4.质量力仅有重力;
5.同一水平面。
提问:如图所示中哪个断面为等压面?
答案: B-B’断面