教学目标:
1.从具体实例中,探索出定义,并了解定义在现实生活中的重要性.
2.从具体实例中,了解命题的概念和结构特征,并会区分真、假命题.
3.通过从具体例子中提炼数学概念,体会数学与实际生活的联系,感受数学来源于生活,并服务于生活.
教学重点与难点:
重点:命题的概念.
难点:命题的结构特征及真假命题的判断.
课前准备:制作教学课件.
教学过程:
一、创设情景,引入新课
活动内容:
①什么叫做定义?举例说明.②什么叫命题?举例说明.
活动目的:回顾上节知识,为本节课的展开打好基础.
教学效果:
学生举手发言,提问个别学生.
第二环节:探索命题的结构
活动内容:
① 探讨命题的结构特征
观察下列命题,发现它们的结构有什么共同特征?
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.
(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.
(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.
(4)如果一个四边的对角线相等,那么这个四边形是矩形.
(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.
② 总结命题的结构特征
1
(1)上述命题都是“如果 ,那么 ”的形式.
(2)“如果 ”是已知的事项,“那么 ”是由已知事项推断出的结论.
(3)一般地命题都可以写成“如果 ,那么 ”的形式,其中“如果”引出的部分是条件,“那么”引出的结论,每个命题都有条件和结论.
活动目的:对命题的结构进行分析,让学生会判断一个命题的条件和结论.
教学效果:
分小组交流讨论,教师引导进行归纳.
应告诫学生当一个命题改写成“如果 那么 ”的形式时,要注意改写时不要机械地添上“如果”和“那么”,应适当地补充一些修饰语句,使改写后的语句通顺,完整。
第三环节:思考探讨
活动内容:
① 找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题?你又是如何知道的呢?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
(3)两角和其中一角的对边对应相等的两个三角形全等;
(4)菱形的四条边都相等;
(5)全等三角形的面积相等.
② 探究真假命题的验证
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?
结论:正确的命题称为真命题,不正确的命题称为假命题.
活动目的: 使学生了解命题有真假之分,并且知道怎样去判断真假命题。
教学效果:
分组交流、讨论、教师引导使得学生形成共识.
在对前面5个命题的真伪进行判断的基础上,大多数学生已经对命题的真假性有了初步的判断,但有部分学生误认为假命题不是命题.
2
第四环节:读一读
活动内容:
① 介绍《几何原本》、公理、定理等知识.
在数学发展史上,数学家们也遇到过类似的问题.公元前3世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里德(公元前300前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面.
《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.
② 公理、定理、概念和证明的关系.
③ 介绍本教材的公理.
1.两点确定一条直线。
2.两点之间线段最短。
3.同一平面内,过一点有且只有一条直线与已知直线垂直。
4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
5.过直线外一点有且只有一条直线与这条直线平行.
6.两边及其夹角对应相等的两个三角形全等.
7.两角及其夹边对应相等的两个三角形全等.
8.三边对应相等的两个三角形全等.
此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 3
题的正确性,另外一条我们将在以后认识它。此外等式和不等式的有关性质也可看作公理.比如:如果a=b,b=c,那么a=c.
④ 读一读《原本与几何原本》
活动目的:培养学生公理化思想和方法,养成科学、严谨思维习惯.
教学效果:
采取教师讲解与学生习读相结合的方式.
第五环节:课堂反思与小结
活动内容:
本节课的重点是了解命题中的真假命题、公理、定理的含义,通过学习学会区分命题的条件、结论,学会判别真、假命题,理解反例、证明等概念.
活动目的:
帮助学生归纳本节课所学知识,对本节课有一个系统的认识,从而能准确地区分命题的真假性,了解命题结构中的条件与结论.
教学效果:
学生能自行归纳本节课的知识,形成了较为清晰的知识脉络。
课后练习:课本第227页习题6.3 第 1、2、3题
4