姓 名实 验 的
指导老师:
日期:
理解反向传播网络的结构和原理,掌握反向传播算法对神经元的训练过程,了解反向传播公式。通过构建 BP 网络实例,熟悉前 目 馈网络的原理及结构。
网 络 拓 朴 图
(输入节点 0,输入节点 1,输入节点 2,输入 (Known,New,Short,Home,Reads) (输入节点 0,输入节点 1,输入节点 4) (1,1,0, 1,0) (0,1,1, 0,1) (0,0,0,0,0) 节点 5) 练 (0,0,0,0) (0,0,1,0) (0,1,1,1) (1,0,0,0) (0,0,0)(0,1,0)(1,0,1) (1,0,0,1,0) (1,1,1,1,1) (1,0,0,0,0) 数 (1,0,1,1)(1,1,0,1)(1,1,1,1) (0,0,1,0,0) (0,1,1,0,1) (1,0,0,1,0)训
据 集
(1,1,0,0,0) (0,0,1,1,0) (1,1,0,0,0) (1,0,1,1,1) (1,1,1,0,1) (1,1,1,1,1) (1,0,1,0,1) (1,1,1,1,1) (0,1,1,0,1) 第 1 代误差 第 51 代误差 第 101 代误差 第 151 代误差 第 201 代误差 1.68 0.52 0.11 0.05 0.03 第 1 代误差 第 51 代误差 第 101 代误差 第 151 代误差 第 201 代误差 0.018 0.010 0.010 0.010 0.010 第 1 代误差 第 51 代误差 第 101 代误差 第 151 代误差 第 201 代误差 4.67 0.66 0.12 0.06 0.03
训 练 误 差 模 拟 的 问 题 或 函 数
多数赞成表决器
异或问题
MailReading(邮件信息识别)
经过 200 代的进化,误差以明显的阶梯型降低观 测 结 果
经过 200 代的进化,误差极大地降低
由于初始误差比较低,故经过 50 代的 进化,误差已经极大地降低,几乎不再变 化
学 生 结 论 :
单层的神经网络无法实现异或问题, 但是 经过训练的 BP 网络可以进行邮件识别, 神经计算能够实现“多数赞成表决器”功能 含有中间层的 BP 网络却可以很好的解决 解决信息识别的难题,可以极大地提高生 异或问题 产力