五年级数学上册
一小数乘法
一、小数乘整数
1.积的变化规律:
(1)一个因数不变,另一个因数扩大到原来的几倍(或缩小到原来的几分之几),它们的积也扩大到原来的几倍(或缩小到原来的重点提示:
小数乘整数的意义与整数乘法的意义
几分之几)。相同,都是求几个相同加数的和的简便运算。
(2)如果一个因数扩大到原来的几倍,另
一个因数缩小到原来的几分之几,它们的
积不变。
2.小数乘整数的计算方法:要点提示:
先按整数乘法算出积,再看因数中一共小数乘整数的积的末尾有0 时,一定要
有几位小数,有几位小数,就从积的右边起数出几位,点上小数点。如果积的小数部分末尾有0,可以把0 去掉,把小数化简。
二、小数乘小数先点积中的小数点,再去掉小数部分末尾的
0。
1.小数乘小数的计算方法:
(1)按照整数乘法的计算方法算出积。
(2)看因数中一共有几位小数,有几位小数,就从积的右边起数出几位,点上小数点。
(3)如果积的小数位数不够,就在积的前面用0 补位。
(4)如果积的小数部分末尾有0,可以把0 去掉。
2.因数与积的大小关系:
一个因数大于1,积大于另一个因数(0 知识巧记:
小数乘法并不难,关键点好小数点;因数小数位数和,等同积中小数位;积中位数如不够,用0 补足再点点;如果因数不为0,
除外);一个因数大于1,一个因数小于1,积小于另一个因数(0 另一个因数小于积;除外)一个因数小于1,一个因数等于1,积等于另一个因数。
另一个因数大于积。
三、小数乘法的估算及积的近似值
1.小数乘法的估算方法:
先用“四舍五入法”把两个因数分别看作与它接近的整数,再把这两个整数相乘即可估算出积。
2.在估算过程中,看作的整数如果比原知识巧记:
四舍五入方法好,近似值来有法找;保留哪位看下位,
五年级数学上册
来的因数大,积的估算值大于准确值;看作的再同数5 作比较;
整数如果比原来的因数小,积的估算值小于是5 大5 前进1,
准确值。
不足5 的全舍掉;
3. 由于估算所得的结果不是积的准确等号改成约等号,
值,因此应该用“≈”连接。使人一看就明了。
4.求得的近似值如果是末尾有0 的小数,
这个小数末尾的0 不能去掉,否则会改变精
确度。
四、小数混合运算方法提示:
小数混合运算的运算顺序:小数混合运算的运算顺序与整数混合
1.在没有括号的算式里,要先算乘除法,运算的运算顺序相同。
后算加减法。
2.在只有小括号的算式里,要先算小括
号里面的,再算小括号外面的。
3.在同时有小括号和中括号的算式里要,知识巧记:
小数简算并不难,
先算小括号里面的,再算中括号里面的,最后运算定律莫记乱;算中括号外面的。交换、分配和结合,
五、小数乘法的简算
1.运算定律:
算完还要再细看。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
减法的性质:a-b-c=a-(b+c)
2.整数乘法的运算定律对于小数乘法同样适用,运用乘法运算定律和减法的性质重点提示:
乘法分配律的逆用: a×c+b×c=(a+b)×c
可以使小数混合运算计算起来更简便。六、用小数乘法解决实际问题
运用小数乘法的知识解决实际问题时,先要找出已知条件和所求问题,然后分析题
中的数量关系最后确定解题方
法。,
方法提示:
可以用树状图表示题中的数量关系,理清解题思路。
二小数除法
一、小数除法的计算方法
1.小数除以整数的计算方法。
按照整数除法的计算方法进行计算;商的小数点要与被除数的小数点对齐;如果被除数小于除数,个位上不够商1,应在提示:
把除数是小数的除法
五年级数学上册
商的个位上写0 占位,点上商的小数点后继续除;如果除到被除转化成除数是整数的除法数的末尾仍有余数,要在后面添0 继续除;除到哪一位不够除时,时,小数点向右移动的位要在商的那一位上写0 占位,然后继续除。例如,数由除数决定,即除数的
小数点向右移动几位,被
除数的小数点也向右移动
几位。
2.除数是小数的除法。
(1)计算方法:
①先移动除数的小数点,使它变成整数。
②除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够的,要在被除数的末尾用0 补足。
重点提示:
0 除以任何数(0 除外)都等于0,所以当被除数是0 时,商也是0,如0÷4.5=0。
③然后按照除数是整数的除法的计算方法进行计算。例
如,
方法提示:
求一个数里面有几个
另一个数,用除法计算。
(2)除数是小数的除法的验算方法与整数除法的验算方法
相同,可以用乘法验算,看商乘除数是否等于被除数,也可以用
除法验算,看被除数除以商是否等于除数。
(3)商与被除数的大小关系:
当被除数不等于0 时,若除数大于1,则商小于被除数;若除数小于1(0 除外),则商大于被除数;若除数等于1,则商等于被除数。
重点提示:
求出的商的近似值末尾是0 时,末尾的0 不能去掉。
3.商的近似值。
(1)取商的近似值的方法:先看保留几位小数,保留几位小
数,就除到比需要保留的小数位数多一位,再按照“四舍五入法”易错题:
取商的近似值。5.7÷9≈0.6333…
五年级数学上册
错解分析:商0.6333…
是循环小数,它是一个准
确值,不能用“≈”连接。
正确答案:
5.7÷9=0.6333…
(2)用“进一法”解决实际问题。
“进一法”:在解决问题时,根据实际情况,不管省略部分最高位上的数字是多少,都要向前一位进1。用“进一法”得
易错题:
98989898.9898 是循环小数。(√)
到的近似值比准确值大。错解分析:题中所给的
(3)用“去尾法”解决实际问题。数虽然是由9 和8 两个数
“去尾法”:在解决问题时,根据实际情况,不管省略部分字重复组成的,但是这两最高位上的数字是多少,都要舍去。用“去尾法”得到的近似个数字在小数部分只重复
值比准确值小。
4.循环小数。
(1)一个小数的小数部分从某一位起,一个数字或者几个出现了两次,小数部分是四位小数,这是一个有限小数。
正确答案:✕
数字依次不断地重复出现,这样的小数叫作循环小数。点拨:
例如,1.666…1.1363636…
(2)循环节。
一个循环小数的小数部分,依次不断重复出现的数字就是这个小数的循环节。例如,在1.666…中,“6”是小数部分依
循环小数的小数部分的位数是无限的,而这个小数的整数部分的位数是
次不断重复出现的数字,“6”就是这个循环小数的循环节;在有限的。
1.1363636…中,“36”是小数部分依次不断重复出现的数字,
“36”就是这个循环小数的循环节。
(3)循环小数的简便写法。
①循环节是一个数字的循环小数,可以只写一个循环数字,并
在这个数字的上面记一个小圆点,如1.666…写作:1.。
②循环节是多个数字的循环小数,可以只写一组循环数
字,并在这组循环数字的首位数字和末位数字上面各记一个
小圆点,如1.1363636…写作:1.1 ;3.5437437…写作:3.5 3 。
五年级数学上册
(4)拓展提高。
纯循环小数:循环节从小数部分的十分位开始的小数叫作纯循环小数。例如,5.,2.777…。
混循环小数:循环节不是从小数部分的十分位开始的小数叫作混循环小数。例如,2.18585…。
(5)取循环小数的近似值的方法:
可以用“四舍五入法”取循环小数的近似值。
方法提示:
理清题目中的数量关系是解题关键。
二、解决问题
在解决实际问题的过程中,要准确找出题中的信息,根据
题中的信息分析数量关系,找出解题策略。要点提示:
三、探索规律:揭示除法中的秘密(a÷b)×(b÷a)
被除数和除数(均不为0)交换位置后,所得的商和原商相=a÷b×b÷a
乘积都等于
1 :
a÷b=m,b÷a=n(a b 0),,。用字母表示如
果、均不为
那么m×n=1。=1
a、b均不为0。
三平行四边形、梯形和三角形
一、平行四边形
1.平行四边形的定义。
两组对边分别平行的四边形叫作平行四边形。
重点提示:
在拉动长方形的过程中,
长方形的形状改变,但两组
对边的长度不变。
2.平行四边形的基本特征。
平行四边形的两组对边分别平行且相等。
3.长方形、正方形和平行四边形之间的关系。易错题:
长方形和正方形同平行四边形一样,都是两组对边分别平平行四边形的对边一定行且相等,长方形和正方形具有平行四边形的一切特征,所以相等,邻边一定不相等。长方形和正方形都是特殊的平行四边形。正方形不仅具备长()
方形的所有特征,并且四条边都相等,所以正方形是特殊的长错解分析:此题错在对方形。平行四边形的特征理解不准
确,平行四边形一定具备对
边相等的特征,但对邻边没
有要求,所以平行四边形的
五年级数学上册
邻边也可以相等。
正确答案:✕
4.平行四边形的特性。
平行四边形具有不稳定性,容易变形。
5.平行四边形的面积。
(1)认识平行四边形的底和高。
重点提示:
平行四边形的底和高是
一组相互依存且对应的概念从平行四边形一条边上的任意一点向对边引垂线,这点到
(底边上的高,高所对应的底)。垂足间的线段叫作平行四边形的高,垂足所在的边叫作平行四
边形的底。平行四边形有无数条高,一般能画出两种长度的高。
(2)平行四边形的面积。
易错题:周长相等的两通过剪拼发现:长方形的面积与平行四边形的面积相等,平个平行四边形,面积也相等。行四边形的底等于长方形的长;平行四边形的高等于长方形的
(√)
错解分析:平行四边形
宽。
长方形的面积=×长宽
平行四边形的面积=底×高
相等,它们的底和高的乘
积
如果用S表示平行四边形的面积,a和h分别表示平行四
却不一定相等,因此面积
不
边形的底和高,那么平行四边形的面积的字母公式为S=ah。
一定相等。
二、梯形
正确答案:✕
1.梯形的定义。
只有一组对边平行的四边形叫作梯形。的面积是由底和高共同决定
的,两个平行四边形的周长
2.平行四边形和梯形的异同点。
相同点:都是四边形;都有平行的对边。
不同点:平行四边形的两组对边分别平行且相等;梯形只有一组对边平行,且平行的这组对边不相等。
3.认识梯形各部分的名称。
易错题:有一组对边
平
行的四边形是梯形。(√)
错解分析:此题错在
没
有掌握梯形的特征。“有一组
对边平行”和“只有一组对边
平行”要注意区分,题中没有
五年级数学上册
强调“只有一组对边平行”,所
以是错的。
正确答案:✕
在梯形中,互相平行的一组对边分别叫作梯形的上底和下
底;不平行的一组对边叫作梯形的腰。从上底的任意一点向下
底引垂线,这点到垂足间的线段叫作梯形的高。
4.认识直角梯形和等腰梯形。
(1)直角梯形。
重点提示:
一个直角梯形有两个直
角。
有一个角是直角的梯形叫作直角梯形。
(2)等腰梯形。
两腰相等的梯形叫作等腰梯形。
等腰梯形是轴对称图形,它只有一条对称轴;直角梯形不是
轴对称图形。
要点提示:
5.梯形的面积。等腰梯形的两腰相等,两
个底角也相等。
两个完全一样的梯形可以拼成一个平行四边形。平行四
边形的底等于梯形的上、下底之和,高等于梯形的高。每个梯
形的面积等于这个平行四边形面积的一半。
平行四边形的面积=(上底+下底)×高,所以梯形面积=(上
底+
下底)×高÷2。
如果用a b h
S,、、、
分别表示上底、下底、高和面积则
S=(a+b)×h÷2。
6.梯形面积计算公式的应用。
(1),已知梯形的上底、
下底和高可以直接运用梯形的面积
公式来计算即梯形的面积=(+ )×÷2,
上底下底高。
易错题:
两个面积相等的梯形一
定可以拼成一个平行四边
形。
(√)
错解分析:两个梯形面
积相等,上底、下底和高不一
定相等,所以面积相等的梯
形不一定能拼成平行四边
形。
完全相同的两个梯形才能拼
成一个平行四边形。
(2)高=面积×2÷(上底+下底)上底+下底=面积×2÷高
五年级数学上册
三、三角形正确答案:✕
1.三角形的含义和各部分的名称。
(1)三角形的含义。
由三条线段顺次首尾相接组成的图形叫作三角形。
(2)三角形各部分的名称。
易错题:由三条线段组
成的图形叫作三角形。(√)
错解分析:由三条线段
组成的图形不一定都是三角
形,由三条线段顺次首尾相
三角形有三条边、三个顶点和三个角。
(3)三角形的特性。
三角形具有稳定性,不易变形。接组成的封闭图形才是三角形。
正确答案:✕
(4)三角形三条边之间的关系。
重点提示:
三角形任意两边的和大于第三边。
在一个三角形中至少有2.三角形的分类。
(1)三角形按角分类:
两个角是锐角。
锐角三角形:三个角都是锐角的三角形叫作锐角三角形。
直角三角形:有一个角是直角的三角形叫作直角三角形。
钝角三角形:有一个角是钝角的三角形叫作钝角三角形。
(2)三角形按边分类。
形。不等边三角形三条边都不相等的三角形叫作不等边三
角:
等腰三角形:有两条边相等的三角形叫作等腰三角形。
等边三角形:三条边都相等的三角形叫作等边三角形。
(3)等边三角形的三个角都是60°。等边三角形和等腰三角
易错提示:
等边三角形一定是等腰
三角形,但等腰三角形不一
定是等边三角形。
形都是轴对称图形。
(4)拓展提高。
在一个三角形中,相等的边所对的角一定相等;反之,如果
两个角相等,那么它们所对的边一定也相等。
3.三角形的内角和。
(1)三角形的内角和定理。
易错题:
三角形中两个锐角的度
数和一定大于90°。(√)
五年级数学上册
错解分析: 这个结论只
适用于锐角三角形, 在直角
三角形和钝角三角形中不成
立。
正确答案:✕通过观察发现:锐角三角形和钝角三角形各自拼成了一个
平角。直角三角形的两个锐角拼起来和它的直角相等,三个角点拨:
的度数相加的和是180°。钝角三角形中两个锐角
(2)三角形的内角和定理的应用。的度数和小于90°,直角三角
已知三角形两个内角的度数, 根据三角形的内角和等于形中两个锐角的度数和等于180°,用内角和180°连续减去已知的两个角的度数,即可求出第90°。
三个角的度数。
在直角三角形中,已知一个锐角的度数,可以直接用90°减
画法提示:
去已知锐角的度数,即可求出另一个锐角的度数。
4.三角形的面积。画高时必须由顶点向它
(1)三角形的底和高。的对边画垂线,当对边不够
长时,可以画虚线将对边延
长。所画的高用虚线表示,并
标上直角符号。
从三角形的一个顶点向它的对边作一条垂线,顶点到垂足
之间的线段叫作三角形的高,垂足所在的边叫作三角形的底。
任意一个三角形都有三条高。
(2)三角形面积公式的推导。
易错题:
三角形的面积等于平行两个完全一样的三角形可以拼成一个平行四边形。四边形面积的一半。(√) 平行四边形的底=三角形的底错解分析: 此题错在没平行四边形的高=三角形的高有强调三角形与平行四边形平行四边形的面积=底×高等底等高这一条件。
三角形的面积=底×高÷2 正确答案:✕
用S 表示三角形的面积,a表示底,h表示高,则S=ah÷2。
五年级数学上册
(3)三角形面积公式的应用。
三角形的高h=2S÷a三角形的底a=2S÷h
四、组合图形
1.认识组合图形。
提示:
计算每个简单图形的
面
积时,要找准对应的数据。方法提示:
组合图形是由简单图形组合而成的。由高级单位换算成低级
2.组合图形的面积。单位,要乘进率;由低级单位
计算组合图形的面积时,要根据已知条件对图形进行分解, 换算成高级单位, 要除以进先转化成已学过的简单图形,分别计算出它们的面积,再求和
或求差。
率。
五、千米2 和公顷
1.认识千米2 和公顷。
(1)千米2 和公顷是常用的测量较大土地面积的计量单位。
(2)边长是100 米的正方形的面积是1 公顷;边长是1 千米
(1000 米)的正方形的面积是1 千米2。
2.公顷和千米2 之间的进率。
1 公顷=10000 米
2 1 千米2=100 公顷=1000000 米2
3.千米2、公顷、米2 之间的换算方法。
千米2 换算成公顷,把小数点向右移动两位,反之,向左移动
两位;公顷换算成米2,把小数点向右移动四位,反之,向左移动四
位;千米2 换算成米2,把小数点向右移动六位,反之,向左移动六
位。
四统计图表与可能性
一、统计表
1.认识复式统计表。
某电器连锁店2011 年四种家用电器销售情况统计
表
2012 2
年月
提示:
如果表头中已标明单位名称,填写栏中数据时不需要加单位名称;如果没有标明,填写栏中数据时,数据后要加单位名称。
五年级数学上册
为了便于分析和比较,有时需要把几个有联系
的简单统计表合并成一个比较复杂的统计表,即复
式统计表。
重点提示:
是表头,店别表示竖栏的类别;种类表示横栏的类别,即四种家用电器的名称;销售额/ 万元表示栏中的数据。
“合计”是指两家分店每种家用电器的销售总
计算时,将同一竖栏中的数据合在一起,填在对应竖栏的合计处。
额。
2.简单统计表和复式统计表的联系与区别。
区别:简单统计表只对某一项目的数量进行统计;复式统计表的统计项目在两个或两个以上。复式统计表的表内部分比简单统计表的表内部分复杂。
联系:都分为表外和表内两部分,表外部分都包
括统计表的名称和制作时间。
二、平均数
求较复杂的平均数的方法:
先求出每组数据的总数量(用每组数据的平均方法总结:
总数量÷总份数=平均数平均数×总份数=总数量总数量÷平均数=总份数
数×数据个数),然后求出全部数据的总数量及总份
数,最后用“总数量÷总份数”求出平均数。
三、统计图
认识并绘制复式统计图:
提示:
1.画直条时,一般先画一种直条,再画另一种直条。
2. 在绘制复式条形统计图时,要写出统计图的名称和制图时间,并注明图例,图中的直条宽窄要相同,单位长度
1. :复式条形统计图
用两种(或两种以上)直条表示不同数量的条形
要统一。
统计图,称为复式条形统计图。
2.复式条形统计图的绘制方法:
与单式条形统计图的绘制方法基本相同,只是
五年级数学上册
每组中表示两组(或两组以上)数据,需要用不同颜色
(或底纹)的直条来表示,同时要注明图例。
3.复式条形统计图的作用:重点提示:
不仅可以清楚地反映出各组数量的多少,还可事件发生的可能性存在
以把各组数量进行对比,从而获取更多的信息。确定性和不确定性。
四、可能性
判断事件发生的可能性:
1.事件发生的可能性的大小与物体数量的多少
有关。物体在总数中所占的数量越多,发生的可能
性越大,所占的数量越少,发生的可能性越小。
2.事件发生的可能性的大小能反映出物体数量
的多少。可能性大,对应的物体数量相对较多。
五方程
一、用字母表示数
1.用字母可以表示数,用含有字母的式子也可以
表示数。
易错题:
2.含有字母的式子的简便写法。
a2=(2)×(a)
在含有字母的式子里,数和字母、字母和字母相
错解分析:
乘时,乘号可以省略不写。省略乘号时,数字要写在字
a2表示两个a相乘,不表示a的
母的前面,数字是1 时,可以省略不写。例如,1×x可以
2 倍,应是a×a。
写成x;3×x可以写成3x;8×b可以写成8b;a×a可以写
正确答案:
成a2,读作a的平方,表示两个a相乘。a2=(a)×(a)
3.用含有字母的式子表示数量关系并求值。
(1)用含有字母的式子可以表示数量关系,当字方法提示:
母的值确定时,含有字母的式子的值也随之确定。将数据代入原式求值时,原来
(2)求含有字母的式子的值时,将字母的值代入含有字母的式子中被省略的乘号要原式,直接计算求出得数即可。还原。
五年级数学上册
二、方程
1.等式和方程。
(1)认识等式。易错题:
3x+12 是方程。(√)把相等的量、式子或数用等号连接起来就成了
错解分析:
等式。
3x+12 中虽然含有未知数,但只
例如,329-9=180+1403a=9b a-8=b+9
是一个式子,并不是等式,因此不是
(2)等式的基本性质。
方程。
等式的基本性质:等式两边都加上(或减去)同一正确答案:✕
个数,左右两边仍然相等;等式两边都乘同一个数(或重点提示:
方程必须具备两个条件:
除以同一个不为0 的数),左右两边仍然相等。
(3)方程的意义。1.是等式。
含有未知数的等式叫作方程。2.含有未知数。
(4)方程与等式的关系。
所有的方程都是等式,但等式不一定是方程。
提示:
方程的解中的“解”是名词,是一
个数值;解方程中的“解”是一个动词,
是指演算的过程。
2.解方程。
(1)用等式的基本性质解一步方程
①一步方程可以直接利用等式的基本性质求重点提示:
解。解方程之前要先写“解”字,再计
②形如ax=b(a≠0)的方程的解法。算。解方程时等号要上下对齐,且每
ax=b一步得到的都是等式。
解:ax÷a=b÷a→根据等式的基本性质
x=b÷a
③使方程左右两边相等的未知数的值,叫作方
程的解;求方程解的过程叫作解方程。
④方程的检验:把求出的x的值代入原方程,看
方程的左右两边是否相等,如果相等,则求出的x的值
是方程的解;如果方程的左右两边不相等,则不是原