We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
arXiv:hep-ph/0403212v2 11 May 2004
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
2FrankDeppisch,HeinrichP¨as,AndreasRedelbachandReinholdR¨uckl2Neutrinoparameters
Inthelastdecadearatheruniquepictureofneutrinomixinghasemerged.AscanbeseeninFig.1,largetomaximalmixinghasbeenestablishedforsolarandatmosphericneutrinos,whilethethirdangleisstronglyconstrainedbyreactormeasurements.Recently,thispictureofneutrinomixinghasbeenre- nedfurther.TheresultsoftheKamLANDreactorexperimentcon rmedthedisappearanceofsolarelectronneutrinos,whiletheSNOexperimentallowedforthe rsttimetostudybothsolarneutrinoappearanceanddisappearanceviatheseparatemeasurementofchargedcurrent,elasticscatteringandneu-tralcurrentinteractions.Moreover,the rstdataoftheK2Klongbaselineacceleratorexperimentindicateacon rmationofatmosphericneutrinoos-cillations.Atthetimewhenalinearcolliderwillbeinoperation,evenmoreprecisemeasurementsoftheneutrinoparameterswillbeavailablethantoday.Inordertosimulatetheexpectedimprovement,wetakethecentralvaluesof22themasssquareddi erences m2ij=|mi mj|andmixinganglesθijfromthemostrecentglobal ttoexistingdata[10]witherrorsthatindicatetheantic-ipated2σintervalsofrunningandproposedexperimentsasfurtherexplainedin[7]:
.39+0.001+0.4722tan2θ23=1.10+1 0.60,tanθ13=0.006 0.006,tanθ12=0.43 0.22,(1)
+0.36+1.2 5 3 m2eV2, m2eV2.12=6.9 0.36·1013=2.6 1.2·10(2)
Furthermore,forthelightestneutrinomassweassumem1≤0.03eV,wherem1 0eVcorrespondstothecaseofahierarchicalspectrum,whilem1 0.03eVapproachesthedegeneratecase.
3mSUGRAbenchmarkscenarios
ForournumericalinvestigationswefocusonthemSUGRAbenchmarkscenar-iosproposedin[11]forlinearcolliderstudies.ThesemodelsareconsistentwithdirectSUSYsearches,Higgssearches,b→sγ,andastrophysicalconstraints.Recently,theprecisionmeasurementofthecosmicmicrowavebackgroundbytheWMAPexperimentcombinedwithpreviouslyavailabledataprovidedare nedestimateofthedensityofcolddarkmatterintheuniverse.AssumingthatmostofthedarkmatteriscomposedofneutralinoLSPs,thesmallerneutralinorelicdensityledtoashiftofpreviousbenchmarkpoints[12]to-wardslowervaluesoftheuniversalscalarmassm0.Intable1wespecifythemSUGRAparametersofthebenchmarkscenariosB’,C’,G’,andI’.Thesearetheonlymodelsof[11]withleft-handedsleptonswhicharelightenough√tobepair-producedate+e colliderswithc.m.energies
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
Lepton avorviolationintheSUSYseesawmodel:anupdate
Fig.1.Summaryofevidencesforneutrinooscillations[9].
Scenariom0/GeVmχ 0
1/GeV
B’6098
40010291
G’115153
35035310
νcTRMνc
2R+νcTRYνL·H2.3(3)
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
4FrankDeppisch,HeinrichP¨as,AndreasRedelbachandReinholdR¨ucklHere,YνisthematrixofneutrinoYukawacouplings,Mistheright-handedneutrinoMajoranamassmatrix,andLandH2denotetheleft-handedleptonandhypercharge+1/2Higgsdoublets,respectively.Atenergiesmuchbelowthemassscaleoftheright-handedneutrinos,Wνleadstothemassmatrix
1Mν=mTmD=YνTM 1Yν(vsinβ)2,DM(4)
fortheleft-handedneutrinos.Thus,lightneutrinomassesarenaturallyob-tainedifthetypicalscaleoftheMajoranamassmatrixMismuchlargerthan00thescaleoftheDiracmassmatrixmD=Yν H2 ,where H2 =vsinβisthe0 H appropriateHiggsv.e.v.withv=174GeVandtanβ=2
2
2(m )=Aabvcosβ δabmlaµtanβ.lLRab+sin2θW22222 mcos2βsinθW))=(m)+δ(m(m abababZRlalR (8)(9)(10)
2Whenm isrenormalizedfromtheGUTscaleMXtotheelectroweakscaleloneobtains,inmSUGRA,
222m2L=m01+(δmL)MSSM+δmL
222m2R=m01+(δmR)MSSM+δmR(11)(12)
(13)A=A0Yl+δAMSSM+δA,
wherem0isthecommonsoftSUSY-breakingscalarmassandA0thecommontrilinearcoupling.Theterms(δm2L,R)MSSMandδAMSSMarewell-known avor-
diagonalcorrections.Inaddition,theevolutiongenerateso -diagonalterms2inδm2L,RandδAwhichinleading-logapproximationaregivenby[5]
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
Lepton avorviolationintheSUSYseesawmodel:anupdate5
χ
0
iν j
Fig.2.Diagramsforli→ljγintheMSSM
δm2L= 1
16π2
with(YlYν LYν) MX(16)Lij=ln
vsinβdiag
whereRisanunknowncomplexorthogonalmatrix.ForrealRanddegenerateright-handedMajoranamasses,Raswellasφ1andφ2dropoutfromtheproductYν LYν.Usingthentheneutrinodatasketchedinsection2asinputtheresultisevolvedtotheuni cationscaleMX.Inwhatfollowswerefertothisillustrativecasewhichsu cesforthepresentdiscussion.Forsmall2neutrinomasses,m2i mij,theaboveprocedureyields
YνLYνab≈MR m212Ua2Ub2 M2, m1,√m3)U ,(18)+
Upondiagonalization,the avoro -diagonalcorrectionsin(11)-(13)generate avor-violatingcouplingsofthesleptonmasseigenstates. MR.(19)
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
6
FrankDeppisch,HeinrichP¨as,AndreasRedelbachandReinholdR¨uckl
+j
ee+j
e0β i
0β+ i0αe0α
+ + 00 Fig.3.Diagramsfore+e → lbla→ljliχ αχ β
5Chargedlepton avorviolation
Atlowenergies,the avoro -diagonalcorrection(14)inducestheradiativedecaysli→ljγ.FromthephotonpenguindiagramsshowninFig.2withcharginos/sneutrinosorneutralinos/chargedsleptonsintheloop,onederivesthedecayrates[4,5]
Γ(li→ljγ)∝α3m5li2|(δmL)2ij|
Br(µ→eγ)≈α
3 lnm2µ
4 .(21)
Athighenergies,afeasibletestofLFVisprovidedbytheprocesse+e →+ + 00 lbla→ljliχ αχ β.FromtheFeynmangraphsdisplayedinFig.3,onecanseethatLFVcanoccurinproductionanddecayvertices.Forsu cientlynarrowsleptonwidthsΓ landdegeneratemasses,thecross-sectioncanbeapproximatedby
pairσi=j∝2|(δmL)2ij|
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
1√2 χ01(lowerband)at
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
8
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
S+B=3,andassumesanintegratedluminosityof1000fb 1,a
signalcross-sectionof0.1fbcouldonlya ordabackgroundofabout1fb.Whetherornotsuchalowbackgroundcanbeachievedbyapplyingselectronselectioncuts,forexample,ontheacoplanarity,leptonpolarangleandmissingtransversemomentumhastobestudiedinadedicatedsimulation.Forlepton avorconservingprocessesonehasfoundthattheSM√backgroundtosleptonpairproductioncanbereducedtoabout2-3fbat
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
10FrankDeppisch,HeinrichP¨as,AndreasRedelbachandReinholdR¨uckl
ParticularlyinterestingandusefularethecorrelationsbetweenLFVinradiativedecaysandsleptonpairproduction.SuchacorrelationisillustratedinFig.6fore+e →µ+e +2χ 01andBr(µ→eγ).Oneseesthattheneutrinouncertaintiesdropout,whilethesensitivitytothemSUGRAparametersre-mains.Furthermore,whilemodelsC’,G’andI’arebarelya ectedbythechangeinthenewparametersetascomparedtothesetusedin[8],inmodelB’σ(e+e →µ+e +2χ 01)foragivenBr(µ→eγ)isbyafactor10largerthaninthepreviousbenchmarkpointB.Anobservationofµ→eγwithabranch- 11ingratiosmallerthan10 wouldthusbecompatiblewithacross-sectionas+ + lbla→µ+e +2χ 0largeas1fbforee→b,a 1,atleastinmodelC’,G’andB’.Ontheotherhand,nosignalatthefuturePSIsensitivityof10 13wouldconstrainthischanneltolessthan0.1fb.ThecorrelationofBr(τ→µγ)and 7σ(e+e →τ+µ +2χ 0does1)isshowninFig.7.Br(τ→µγ)<3·10
notruleoutcross-sectionsintheτµchannelof1fbandlarger.However,onehastokeepinmindthatthesecorrelationsdependverymuchontheSUSYscenario.
7Conclusions
SUSYseesawmodelsleadingtotheobservedneutrinomassesandmixingscanbetestedbylepton- avorviolatingprocessesinvolvingchargedleptons.Wehavepresentedanupdatedanalysisoftheprospectsforradiativeraredecays+ + li→ljγandsleptonpairproductionanddecaye+e → lbla→ljli+E/.Assumingthemostrecentglobal tstoneutrinooscillationexperiments[10]wehaveillustratedtheimpactoftheuncertaintiesintheneutrinoparameters.Furthermore,usingpost-WMAPmSUGRAscenarios[11]wehaveinvestigatedthedependenceofLFVsignalsonthemSUGRAparameters.ForscenarioB’ourresultscanbesummarizedasfollows.AmeasurementofBr(µ→eγ)≈10 13wouldprobeMRintherange5·1012÷5·1013GeV,whileameasurementofBr(τ→µγ)≈10 8wouldallowtodetermineMR 1015GeVwithinafactorof2.Furthermore,Br(µ→eγ)=10 13÷10 11√impliesσ(e+e →µ+e +2χ 01)=0.02÷2fbat
s=800GeV.Hence,linearcollidersearchesarenicelycomplementarytosearchesforraredecaysatlowenergiesandattheLHC.
Acknowledgements
ThisworkwassupportedbytheBundesministeriumf¨urBildungundForschung(BMBF,Bonn,Germany)underthecontractnumber05HT4WWA2.
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
Lepton avorviolationintheSUSYseesawmodel:anupdate11
References
1.S.T.Petcov,Sov.J.Nucl.Phys.25,340(1977)[Yad.Fiz.25,641(1977ERRAT,25,698.1977ERRAT,25,1336.1977)].S.M.Bilenkii,S.T.Petcovand
B.Pontecorvo,Phys.Lett.B67,309(1977).
2.F.BorzumatiandA.Masiero,Phys.Rev.Lett.57,961(1986).
3.J.Hisano,T.Moroi,K.TobeandM.Yamaguchi,Phys.Rev.D53,2442(1996)
[arXiv:hep-ph/9510309].R.Barbieri,L.HallandA.Strumia,Nucl.Phys.B445,219(1995);G.K.LeontarisandN.D.Tracas,Phys.Lett.B431,90(1998);W.Buchmuller,D.DelepineandF.Vissani,Phys.Lett.B459,171(1999);M.E.Gomez,G.K.Leontaris,S.LolaandJ.D.Vergados,Phys.Rev.D59,116009(1999);S.F.KingandM.Oliveira,Phys.Rev.D60,035003(1999);W.Buchmuller,D.DelepineandL.T.Handoko,Nucl.Phys.B576,445(2000);J.Ellis,M.E.Gomez,G.K.Leontaris,S.LolaandD.V.Nanopoulos,Eur.Phys.J.C14,319(2000);J.L.Feng,Y.NirandY.Shadmi,Phys.Rev.D61,113005(2000);J.SatoandK.Tobe,Phys.Rev.D63,116010(2001);D.F.Carvalho,M.E.GomezandS.Khalil,JHEP0107,001(2001).J.Sato,K.TobeandT.Yanagida,Phys.Lett.B498,189(2001);S.DavidsonandA.Ibarra,JHEP0109,013(2001).P.Ciafaloni,A.RomaninoandA.Strumia,Nucl.Phys.B458,3(1996);J.Hisano,T.Moroi,K.TobeandM.Yamaguchi,Phys.Lett.B391,341(1997);J.Hisano,D.Nomura,Y.Okada,Y.ShimizuandM.Tanaka,Phys.Rev.D58,116010(1998);J.Hisano,D.NomuraandT.Yanagida,Phys.Lett.B437,351(1998);S.W.Baek,N.G.Deshpande,X.G.HeandP.Ko,Phys.Rev.D64,055006(2001);G.Barenboim,K.HuituandM.Raidal,Phys.Rev.D63,055006(2001);X.J.BiandY.B.Dai;http://vignac,I.MasinaandC.A.Savoy,Phys.Lett.B520,269(2001).A.Kageyama,S.Kaneko,N.ShimoyamaandM.Tanimoto,Phys.Rev.D65096010(2002)[arXiv:hep-ph/0112359];K.S.Babu,B.DuttaandR.N.Mohapatra,Phys.Rev.D67,076006(2003)[arXiv:hep-ph/0211068];B.DuttaandR.N.Mohapatra,Phys.Rev.D68,056006(2003)[arXiv:hep-ph/0305059].
4.J.A.CasasandA.Ibarra,Nucl.Phys.B618,171(2001)[arXiv:hep-ph/0103065].
5.J.HisanoandD.Nomura,Phys.Rev.D59,116005(1999)[arXiv:hep-ph/9810479].
6.N.Arkani-Hamed,H.C.Cheng,J.L.FengandL.J.Hall,Phys.Rev.Lett.77,1937(1996)[arXiv:hep-ph/9603431];N.Arkani-Hamed,J.L.Feng,L.J.HallandH.C.Cheng,Nucl.Phys.B505,3(1997)[arXiv:hep-ph/9704205];H.C.Cheng,arXiv:hep-ph/9712427;M.HirouchiandM.Tanaka,Phys.Rev.D58,032004(1998)[arXiv:hep-ph/9712532];J.L.Feng,Int.J.Mod.Phys.A13,2319(1998)[arXiv:hep-ph/9803319];J.Hisano,M.M.Nojiri,Y.ShimizuandM.Tanaka,Phys.Rev.D60,055008(1999)[arXiv:hep-ph/9808410];
D.Nomura,Phys.Rev.D64,075001(2001)[arXiv:hep-ph/0004256];M.Dine,Y.GrossmanandS.Thomas,eConfC010630,P332(2001)[Int.J.Mod.Phys.A18,2757(2003)][arXiv:hep-ph/0111154].N.Arkani-Hamed,J.L.Feng,L.J.HallandH.Cheng,Nucl.Phys.B505(1997)3[hep-ph/9704205].J.Hisano,M.M.Nojiri,Y.ShimizuandM.Tanaka,Phys.Rev.D60(1999)055008[hep-ph/9808410].M.Guchait,J.KalinowskiandP.Roy,Eur.Phys.J.C21(2001)163[arXiv:hep-ph/0103161].Phys.Rev.D66(2002)015003[arXiv:hep-ph/0201284].ActaPhys.Polon.B32(2001)3755.Acta
We present an update of previous work on charged lepton flavor violation (LFV) in the seesaw model. The most recent neutrino data fits and post WMAP mSUGRA benchmark scenarios are used as input. In this framework we compare the sensitivity of rare radiativ
12FrankDeppisch,HeinrichP¨as,AndreasRedelbachandReinholdR¨uckl
Phys.Polon.B33(2002)2613[arXiv:hep-ph/0207051].J.J.Cao,T.Han,X.ZhangandG.R.Lu,Phys.Rev.D59,095001(1999)[arXiv:hep-ph/9808466].J.Cao,Z.XiongandJ.M.Yang,Eur.Phys.J.C32,245(2004)[arXiv:hep-ph/0307126].M.Cannoni,S.KolbandO.Panella,Phys.Rev.D68,096002(2003)[arXiv:hep-ph/0306170].
F.Deppisch,H.P¨as,A.Redelbach,R.RucklandY.Shimizu,Eur.Phys.J.C28,365(2003)[arXiv:hep-ph/0206122].
F.Deppisch,H.P¨as,A.Redelbach,R.R¨ucklandY.Shimizu,acceptedforpublicationinPhys.Rev.D,arXiv:hep-ph/0310053.
HomepageHitoshiMurayama,http://hitoshi.berkeley.edu/neutrino/.
M.Maltoni,T.Schwetz,M.A.TortolaandJ.W.F.Valle,Phys.Rev.D68,113010(2003)[arXiv:hep-ph/0309130].
M.Battaglia,A.DeRoeck,J.R.Ellis,F.Gianotti,K.A.OliveandL.Pape,arXiv:hep-ph/0306219.
M.Battagliaetal.,Eur.Phys.J.C22(2001)535[arXiv:hep-ph/0106204].L.SerinandR.Stroynowski,ATLASInternalNote(1997);T.Ohshima,talkatthe3rdWorkshoponNeutrinoOscillationsandtheirOrigin(NOON2001),2001,ICRR,Univ.ofTokyo,Kashiwa,Japan;D.Denegri,privatecommunication.R.BeckerandC.VanderVelde,IIHE-93-08PreparedforWorkingGroupone+e-Collisionsat500-GeV:ThePhysicsPotential,Munich,Germany,20Nov1992.7.8.9.10.11.12.13.14.