PSCAD/EMTDC-BasedModelingandAnalysisofaGearlessVariableSpeedWindTurbine
Seul-KiKimandEung-SangKim
Abstract—Thispaperpresentsdynamicmodelingandsimula-tionofagridconnectedvariablespeedwindturbine(VSWT)usingPSCAD/EMTDC,http://ponentmodelsandequationsareaddressedandtheirim-plementationsintoPSCAD/EMTDCaredescribed.Controllablepowerinverterstrategyisintendedforcapturingthemaximumenergyfromvaryingwindspeedandmaintainingreactivepowergenerationatapre-determinedlevelforconstantpowerfactororvoltageregulation.Thecomponentmodelsandentirecontrolschemeareconstructedbyuser-de nedfunctionprovidedintheprogram.Simulationstudiesprovidecontrolperformanceanddy-namicbehaviorofagearlessVSWTundervaryingwindspeeds.Inaddition,thesystemresponsestonetworkfaultconditionshavebeensimulated.Thismodelingstudycanbeemployedtoevaluatethecontrolscheme,outputperformanceandimpactsofaVSWTonpowergridatplanningordesigningstage.
IndexTerms—Gearlesswindgenerator,gridconnection,maxi-mumpowercapture,powerelectronicsinterface,reactivepowercontrol,variablespeedwindturbine(VSWT).
Fig.1.SchematicrepresentationofagearlessVSWT.
Id,IqMAXCPλOPTη
Pref,QrefVrefVrmsPFQlimitsSinvd-andq-axiscurrentatVSWTterminal[A]Maximumpowercoef cient
MAX
λwhereCP=CP(λOPT)
Electricalef ciencyofgeneratorandinverterRealandreactivepowertargets[kW],[kVar]Phasevoltagemagnitudetarget
PhasevoltagemagnitudeofVSWT(rms)Desiredpowerfactor
Reactivepowercapabilitylimits[kVar]Ratingofinverter[kVA]
LISTOFSYMBOLS
λωMR
VWINDPMρCPTMfBNP
RPMTURHiKTEθiωMωEEfIfVdcα
Pinv,QinvVinv,IinvVd,Vq
Tipspeedratio
Mechanicalspeedofwindturbine[rad/s]Bladeradius[m]windspeed[m/s]
Mechanicalpowerfromwindturbine[kW]Airdensity[kg/m3]Powercoef cient
Mechanicaltorquefromwindturbine[N·m]Electricalbasefrequencyofgenerator[Hz]Numberofpoles
Ratedspeedofwindturbine[rpm]Inertiaconstantofithmass[s]Shaftspringconstant[Nm/rad]
Electricaltorqueofgenerator[N·m]
Massangleofithmass(referenceongenerator)Mechanicalspeedofgenerator[rad/s]Electricalspeedofgenerator[rad/s]Fieldvoltageofexciter[V]Fieldcurrentofexciter[A]DClinkvoltage[V]IGBTswitchingsignal
Measuredrealandreactivepower[kW],[kVar]Measuredvoltageandcurrentofinverter[V],[A]
d-andq-axisvoltageatVSWTterminal[V]
V
ManuscriptreceivedAugust10,2004;revisedFebruary17,2005.Paperno.TEC-00235-2004.
DigitalObjectIdenti er
10.1109/TEC.2005.858063
I.INTRODUCTION
ARIABLEspeedoperationyields20to30percentmoreenergythanthe xedspeedoperation,reducespower uctuationsandimprovesreactivepowersupply[1].Fallingpricesofthepowerelectronicshavemadethevariablespeedtechnologymoreeconomicalandcommon.Suchwindturbinesystem,aswithothertypesofdistributedgeneration,ismostlyconnectedtodistributionfeeders.Thedistributedgenerationcannotconnecteasilytotheelectricpowernetworkwithoutconductingcomprehensiveevaluationsoncontrolperformanceandgridimpact.Stablegridinterfacerequiresareliabletoolforsimulatingandassessingthedynamicsofagridconnectedvariablespeedwindturbine.
PSCAD/EMTDCisanindustrystandardsimulationtoolforstudyingthetransientbehaviorofelectricalnetworks.Itsgraphic-baseduserinterfaceallowstheusertographicallyassemblethecircuit,runthesimulation,analyzetheresults,andmanagethedatainacompletelyintegratedgraphicalenvironment.Itscomprehensivelibraryofmodelssupportsmostofpowerplantacanddccomponentsandcontrols.Itprovidesthe exibilityofbuildinguser-de nedmodelseitherbyassemblingthemvisuallyusingexistingmodelsorbyutilizinganintuitivelygraphicaldesigneditorandwritingcodesinFortran,PSCADscript,CandMATLAB.Itprovidesapowerfulresourceforassessingtheimpactofnewpowertechnologiesinthepowernetwork[2],[3].
ThepurposeofthispaperistoprovidesimulationanddynamicperformanceandgridimpactanalysiscapabilityofagearlessVSWTbasedonPSCAD/EMTDC.TheschematicdiagramofthewindgenerationmodelisshowninFig.1.The
0885-8969/$25.00©2005IEEE
http://ponentsofaproposedsimulationmodel.
TABLEI
PARAMETERSFORWINDTURBINEM
ODEL
modelsystemiscomposedofa xed-pitchstallregulatedwindturbine,agearlessdirectdrivegeneratorandacontrollablepowerelectronicssystem,whichconsistsofasimpledioderecti erandasix-IGBTvoltagesourceinverter(VSI)[4].Agraphic-basedmodelsuitableforelectromagnetictransientstudieshasbeenproposedbasedonmathematicalequationsandpowerelectronicscontrolscheme.Thelargebaseofprogram’sbuilt-incomponentsanduser-de nedmodels,ifaparticularmodeldoesnotexist,havebeenusedformodelingtheVSWTcomponentsandcontrolscheme.SimulationresultsdemonstratethemodelingstudyprovidesareliableandusefulsimulationtoolforassessingthedynamicbehaviorofagearlessVSWTintegratedintopowersystem.
II.PSCAD/EMTDCBASEDMODELING
Fig.2presentsaschematicdiagramoftheproposedsimula-tionmodel,whichconsistsofthefollowingcomponents:
Windmodel;Windturbine;
Directdrivegenerator;Shaftdynamics;
Recti erandvoltagesourceinverter;andPowerelectronicscontrol.
semblingbuilt-infunctionsandlogiccircuitsprovidedintheprogram.B.WindTurbine
Windbladetorquefromwindspeedisdescribedbythefol-lowing(2)–(4)
λ=PM=TM
ωMRVWIND
13ρπR2CPVWIND2
(2)(3)(4)
2ωMPM15
==ρπRCP3.ωM2λ
Themechanicaltorqueobtainedfrom(4)entersintotheinput
torquetothewindgenerator,andisdrivingthegenerator.CPmaybeexpressedasafunctionofthetipspeedratio(TSR)λgivenby(5),[7]
π(λ 2)
0.00184(λ 2)β
13 0.3β
(5)
whereβisthebladepitchangle.Fora xedpitchtype,thevalueofβissettoaconstantvalue.TheTableIshowsparametersenteredfortheuser-de nedwindturbinemodel.CP=(0.44 0.0167β)sinC.Direct-DriveGenerator
Thecost,weightandmaintenanceneedsofmechanicalgear-ingplaceaseriouslimitationonfurtherincreaseofpowerratings.Direct-coupled,low-speedgeneratorsareunderdevel-opmentinresponsetotheseneedsandsomearealreadyinservice[8].Unlikecommonsynchronousgenerators,thedirectdrivegeneratorscoveramuchlowerspeedrangeatabout20to60rpmandhaveamuchhighernumberofpoles,e.g.,50upto300.Theyarenotreadilyavailableandhavetobecustommade.Adirect-coupledgenerator,excitedusingarotorwinding,maybedescribedbyasynchronousmachinetheorysinceitisidenticaltoasynchronousgeneratorinbasicstructureand
A.WindModel
Awindmodelselectedforthisstudyisafour-componentmodel[5],andcanbedescribedby
VWIND=VBASE+VGUST+VRAMP+VNOISE
whereVBASE=VGUST=VRAMP=VNOISE=
basecomponent[m/s];
gustwindcomponent[m/s];rampwindcomponent[m/s];noisewindcomponent[m/s].
(1)
Thebasecomponentisaconstantspeed.Thewindgustcom-ponentmaybeexpressedasasineorcosinewavefunction[6]andacombinationofdifferentcosinefunctionshasbeenused.Therampwindcomponentcanberepresentedbythebuilt-inrampfunctionoftheprogram.Thenoisecomponentofwindspeedhasbeende nedbyatrianglewavefunction,ofwhichfrequencyandmagnitudeareadjustable.Basedontheabovefourcomponents,awindspeedmodelisconstructedbyas-
KIMANDKIM:PSCAD/EMTDCBASEDMODELINGANDANALYSISOFAGEARLESSVARIABLESPEEDWINDTURBINE423
TABLEII
BASICDATAFORTHEDIRECT-DRIVEGENERA
TORTABLEIII
DATAFORSHAFTSYSTEMM
ODEL
Fig.3.GraphicalmodelofshaftdynamicsinPSCAD/EMTDC.
Fig.4.
Recti erandVSIcircuitforVSWTmodeling.
operationexceptforitshighernumberofpolesandlowspeed.PSCAD/EMTDCprovidesafullydevelopedsynchronousma-chinemodel,basedonthegeneralizedmachinetheory[2].Withthismodel,bothsub-transientandtransientbehaviorcanbeex-amined.ItisconsideredthatthegeneratorisequippedwithanexciteridenticaltoIEEEtype1model[9].Theexciterplaysaroleofhelpingthedclinktomeettheadequatelevelofinverteroutputvoltageasgivenin(6)below
√
2·VACRMS
(6)Vdc≥
DMAX
whereVACRMSisRMSlinetoneutralvoltageoftheinverterandDMAXismaximumdutycycle.
Ingearlesstypevariable-speedoperation,electricalspeedofthewindgeneratorisnotconsistentwiththesynchronousspeedoftheelectricnetworkandgenerallymuchslowerthanthesyn-chronousspeed.Theelectricalbasefrequencyofthemachinemustbesetequaltotheratedspeedofthewindturbine.ThebaseangularfrequencyωBmaybeobtainedfrom(7)and(8).Basicparametersusedforthedirect-drivegeneratormodelaregiveninTableII[10].Manyotherinputparametersregardinginherentcharacteristicsofamachine,e.g.,damping,leakage,saturation,havebeenlefttodefaultvaluesprovidedinPSCAD/EMTDC[2]
fB=
NPRPMTUR
·260
RPMTUR
.60
(7)(8)
TableIIIshowsdatausedfortheshaftdynamicsmodeloftheVSWT.
E.PowerElectronicsControl
Severaltypesofpowerelectronicsinterfaceshavebeeninves-tigatedforvariablespeedwindturbines[4],[12].Thissectionaddressesapowerconversionsystemcomposedofasix-dioderecti erandasix-IGBTvoltagesourceinverter,whichissim-ple,cost-effectiveandwidelyusedforindustrialapplications.TheVSIincludesaLCharmonic lteratitsterminaltoreduceharmonicsitgenerates.Fig.4presentsarecti erandVSImodelofthestudiedVSWT.Therecti erconvertsacpowergeneratedbythewindgeneratorintodcpowerinanuncontrollableway;therefore,powercontrolhastobeimplementedbytheVSI.Acurrent-controlledVSIcantransferthedesiredrealandreac-tivepowerbygeneratinganaccurrentwithadesiredreferencewaveform[12].
TheentireVSIcontrolschemeispresentedinFig.5.Maincontroltargetsarethedesiredrealandreactivepower,PrefandQreftobefollowedbyactualrealandreactivepower,PinvandQinv.Thedesiredvaluesarespeci edaccordingtopowercontrolstrategyoftheVSWT.Thestrategyistocapturethemaximumenergyfromvaryingwindspeedwhilemaintainingreactivepowergenerationforconstantpowerfactororvoltageregulation.Detailsontherealandreactivepowertargetsspeci -cationaccordingtothestrategywillbeaddressedinthefollow-ingSectionII-FandG.Oncethetargetvaluesaredetermined,d–qtransformationcontrolisappliedtoenablerealandreac-tivecomponentofacoutputpowertobeseparatelycontrolled.Thebasicconceptofd–qcontrolareasfollows:variablesinthea–b–ccoordinatemaybetransformedintothoseinthed–qcoordinaterotatingatsynchronousspeedbytherotationald–qtransformationmatrixT(θ)[13].1/2
T(θ)=2/3 cosθ
sinθ
1/2
cos(θ 2π/3)sin(θ 2π/3)
1/2
cos(θ+2π/3) (9)sin(θ+2π/3)
ωB=2πfB=π·NP·
D.ShaftDynamics
Whilethewindturbineandthegeneratorarerotatingviathesameshaft,torsionaloscillationmayresultbetweentwopredominantmassesmutuallycoupledwiththeshaftof nitestiffness.Inordertoseetorsionalcharacteristicsoftheturbine-generator,theshaftsystemdynamicsmustbeconsidered.Theshaftdynamicscanberepresentedbythemultimasstorsionalshaftmodel,whichisbasedonthewell-knownshaftsystemmodelandequations[11].GraphicalmodelofmultimassshaftdynamicsisshowninFig.3.ThemultimassmodelcanbeeasilyinterfacedwiththesynchronousmachinemodelinPSCAD.
424IEEETRANSACTIONSONENERGYCONVERSION,VOL.22,NO.2,JUNE
2007
Fig.5.CurrentcontrolschemeofVSI.
where
[υ0υdυq]T=T(θ)[υaυbυc]T;
variablesontheo-d-qframe;υ0,υd,υq=
variablesonthea-b-cframe;υa,υb,υc=
θ=phaseangleofυainradian.
Inabalancedthreephasesystem,theinstantaneousactiveandreactivepower,PandQ,aredescribedby(10)
P=
3
(VdId+VqIq),2
Q=
3
(VdIq VqId).2
(10)
Here,VqisidenticaltothemagnitudeoftheinstantaneousvoltageattheVSWTterminalandVdiszerointherotatingd–qcoordinate,sothe(10)maybecontractedintoasimpler(11)
P=
3
|VO|Iq,2
3
Q= |VO|Id
2
(11)
Fig.6.
CurrentcontrolschemeimplementedinPSCAD/EMTDC.
where|VO|istheinstantaneousVSWTvoltagemagnitude.Sincethevoltagemagnituderemainsalmostasconstantasgridacvoltage,therealandreactivepowercanbecon-trolledbyregulatingtheq-andd-axiscurrent,IqandId,respectively.
Throughappropriateproportional-integral(PI)controlgains,errorsbetweenPrefandPinvandbetweenQrefandQinv(orbetweenVrefandVrmsdependingonreactivepowercontrolmode)inFig.5areprocessedintotheq-andd-axisreferencecurrentIqrefandId,respectively,whicharetransformedintothea-,b-andc-axisreferencecurrentIaref,IbrefandIcrefbythedqtoabctransformationblock.Thephase-lock-loop(PLL)blockgeneratesasignalsynchronizedinphasetotheinverteroutputvoltageVatoprovidethereferencephaseangleθreffortherotationalinversed–qtransformationT(θ) 1.Whenthedesiredcurrentsonthea-b-cframeareset,apulsewidthmodulation(PWM)techniqueisappliedbecauseofitssimplicityandexcellentperformance.InthePWMgeneratorblock,thedesiredcurrentvectorIabcrefandtheactualcurrentvectorIabcoftheVSWTarecompared.Theerrorsignal
vec-
torIerriscomparedwithatrianglewaveformvectortocre-ateswitchingsignalsforthesixIGBTsoftheVSI.Theupperandlowerlimitsoftheq-axisreferencecurrentIqupperandIqareusuallysetat1.1to1.5timestheVSI’sratedcur-renttoprotectthesystemfromexcessiveheating.Thed-axisreferencecurrentlimitsIdupperandIdlowermaybespeci- edbasedon(11)andreactivepowercapabilitylimitsoftheinverter,(15).
Fig.6showstheVSIcontrolschemeimplementedinPSCAD/EMTDC.ThePref&Qrefgeneratorblock,auser-de nedcomponent,speci estargetvaluesfortherealandreac-tivepoweroftheVSWTaccordingtoitscontrolstrategy.
Thebuilt-ininterpolated ringpulsescomponentreturnsthe ringpulseandtheinterpolationtimerequiredforaninterpo-latedturn-onandturn-offofsixIGBTs(S1–S6)intheformof
KIMANDKIM:PSCAD/EMTDCBASEDMODELINGANDANALYSISOFAGEARLESSVARIABLESPEEDWINDTURBINE425
TABLEIV
PARAMETERSUSEDINPICONTROLB
LOCKS
reactivepowerQrefmaybespeci edby(14).
Qref=Pref·
1 PF.
PF
(14)
Fig.7.Powerversusturbinespeedcurve.
Involtageregulationmode,reactivepowercompensationiscontrolledinsuchamannerthatthevoltagemagnitudeoftheVSWTterminaliskeptconstantataspeci edlevel.Therefore,thetargetforreactivecontrolisthedesiredvoltagemagnitudeVref.Itmustbesetasthenominalvoltageoftheacgrid,wherepossibleadditionoftheVSWTisconsidered.
Whetherthemodecontrolspowerfactororvoltage,thereac-tivepowergenerationislimitedbyreactivepowercapabilityoftheVSWT.Thelimitsofreactivecapabilityaredeterminedbyratingoftheinverterandmayberepresentedby(15).
Qlimits
2 P2.=±Sinvinv
(15)
atwo-elementarray.Theoutputofthecomponent,on-offstatus
andtimeoftheIGBTs,isbasedonacomparisonofcurrenter-rorsandtrianglecarriersignalswhichenterintothecomponentintheformoffoursix-elementarrays(HLHOFFandLTableIVpresentsparametersusedinthePIcontrolblocksinFig.6.Theq-axisreferencecurrentlimitshavebeensetat1.2timesthemaximumloadcurrent.F.VariableSpeedControl
Belowratedwindspeeds,therealpoweroftheVSWTisregulatedtocapturethemaximumwindenergyfromvaryingwindspeed.Themaximumpoweravailablecanbedescribedby(12)anditmaybedepictedbyFig.7.Thissimplymeansthatthemaximumpowerisobtainedbyvaryingtheturbinespeedwithwindspeedsuchthatitisonthetrackofthemaximumpower
MAX
[1],[14]atalltimes.OnereliablewayofcapturingcurvePM
themaximumpoweristospecifythedesiredrealpowerPrefoftheinverterastheavailablemaximumpowermultipliedbythesystemef ciencyηasgivenin(13)
MAXPM
MAX
15CP3=πρRωM
2λOPT
MAXηPM.
III.SIMULATIONSTUDY
Usingtheproposedmodel,comprehensivesimulationstudy
wascarriedouttoobservethedynamicbehaviorsofaVSWTwithvaryingwindconditionsanditsresponsetonetworkfaultconditions.Fig.8presentstheVSWTsystemimplementedinPSCAD/EMTDC.Thewindturbineof1MWratinghasbeenconnectedtodistributionfeedersthrougha0.69/22.9kVtrans-former.Theratingoftheinverteris1.2MVAanditsPWMswitchingfrequencyis3.6kHz.Theshortcircuitcapacityofthe22.9kVbusis68.4MVA.TheX/Rratioofthebusimpedanceis52.Bothtypesofreactivepowercompensation,constantpowerfactorandvoltageregulation,aresimulatedtocomparetheirimpactsontheVSWTloadvoltage.Thesetvalueisunityinpowerfactormode,andthedesiredvoltageissetto1.005puinvoltageregulation.
A.PerformanceTestsUnderVaryingWindSpeed
TheVSWTisinunitypowerfactoroperationunderthewindspeedconditionpresentsinFig.9.Fig.10presentstheturbineangularspeedvariationinresponsetothevaryingwindspeed.Therotorspeedhasvariedsmoothlyinresponsetochangesinwindspeed,owingtotheinertiaoftheturbineandgenerator.Thepowercoef cientinFig.11wasmaintainedatthemax-imumvalueof0.44,whichindicatesthattheturbinespeediswellcontrolledtocapturethemaximumenergy.Fig.12(a)and(b)presentstheaerodynamictorquecreatedbythewindtur-bine,theelectricaltorqueproducedbythegeneratorandthemechanicaltorqueexertedonthedirectdriveshaft.Thetor-sionaloscillationsoftheshafttorqueinFig.12(b)resultfromtheinteractionbetweentheaerodynamicinputtorqueandelec-tricaloutputtorque.Fig.13presentstheaerodynamicpowerofthewindbladeandtherealandreactivepoweroftheVSWTatunitypowerfactor.Theaerodynamicpowerhas uctuateddirectlywithwindspeedchange,whereastherealpowerhasvariedsmoothly.Thisispossibleduetotheinertiasmoothing
(12)(13)
Pref=
Aboveratedwindspeeds,themaximumpowercontrolisoverriddenbystallregulationforconstantpower.Inthisstudy,thewindbladeisassumedtobeideallystallregulatedatratedpowersothatrotorspeedkeepsconstantatratedspeedunderhighwindspeeds.Thedynamicbehaviorofstallregulation,however,hasnotbeenconsideredinthework.Moredetailedstudyonactualstallcontroldynamicswillproceedinafuturework.
G.ReactivePowerControl
Variouscontrolmodescanbeusedfordeterminingtheamountofnecessaryreactivepowergeneration.Possiblecon-trolmodesincludepowerfactor,kvar,currentandvoltage.Inthestudy,constantpowerfactorandvoltageregulationhavebeenimplemented.Inconstantpowerfactormode,thedesired
426IEEETRANSACTIONSONENERGYCONVERSION,VOL.22,NO.2,JUNE
2007
Fig.8.VSWTimplementedin
PSACD/EMTDC.
Fig.9.Wind
speed.Fig.11.Powercoef cientCP
.
Fig.10.Windturbinespeed.
effectandVSIinterfacecontrol.TheVSWTloadvoltagevaria-tionisgiveninFig.14andthevoltagemagnitude uctuatedwithwindspeed.Fig.15showsthedclinkvoltageanditwasmain-tainedatalevelsuf cienttomeettheacconversionrequirement.Fig.16showsthereferencecurrentandtheactualcurrent.Thevoltagewaveformsattheprimarybusbar(0.69kVside)oftheVSWTtransformerarepresentedinFig.17.Thevoltagewave-formsandharmonicspectraattheinverterandVSWTterminalareshowninFig.18(a)and(b).TheharmonicdistortionswerereducedtoasatisfactorylevelforgridconnectionthroughtheLCharmonic lter.
Inordertoseethesystemperformanceindifferentreactivecontrolmodes,about600kVarofreactiveloadwasaddedatthesecondbusbar(22.9kVside)ofthetransformer.Fig.19and20presenttheresultsofconstantpowerfactorandvoltageregula-tionoperation,respectively.Asadditionalloadwasadded,theterminalbusvoltagemadeasuddendropinFig.19(a).Itis
be-
Fig.12.TorquesofVSWT.(a)Aerodynamictorqueandelectricaltorque,(b)Mechanicaltorqueondirectdriveshaft.
causetheVSWTinunitypowerfactoroperationdidnotproducereactivegenerationandtheaddedloadwasservedbythepowernetwork,asshowninFig.19(b).However,theVSWTinconstantvoltageoperationsharedtheaddedreactivedemandbysupply-ingabout300kVartothepowergridandmaintainedtheloadvoltageataspeci edlevel,asshowninFig.20(a)and(b).
KIMANDKIM:PSCAD/EMTDCBASEDMODELINGANDANALYSISOFAGEARLESSVARIABLESPEEDWINDTURBINE
427
Fig.13.Aerodynamicpowerofwindandrealandreactivepowerof
VSWT.
Fig.18.Voltageharmonics.(a)VoltagewaveformsatinverterandWTtermi-nal,(b)Harmonic
spectra.
Fig.14.Terminalbus
voltage.
Fig.15.DClink
voltage.
Fig.19.Caseofpowerfactorcontroloperation.(a)Terminalvoltagemagni-tude,(b)ReactivegenerationofVSWTandreactiveinjectionintogrid.
B.DynamicResponsetoSystemFaultConditions
Fig.16.
Referencecurrentandactual
current.
Fig.17.VoltagewaveformsatprimarybusbarofVSWT
transformer.
Generally,themostcommontypeofnetworkfaultisasinglelinetogroundfaultandthemostseveretypeisathree-phaseshortcircuitfault.FaulttestswerecarriedouttoexaminetheVSWT’sresponseinpower,torqueandrotorspeedunderbothtypesofnetworkfaultconditions.Faultswereappliedonthe22.9kVfeeder(Fig.21)during0.16[sec].Incaseofnetworkfaults,thedistributedgenerationshouldceasetoenergizetheareaelectricpowersystemwithinatleast0.16[sec]afterthestartoftheabnormalconditioninaccordancewithIEEEP1547[15].ItwasassumedthattheVSWToperatesatfullloadingundertheratedwindspeed.
1)SingleLinetoGroundFault:Fig.22(a),(b),and(c)presentthevoltageandcurrentofthefaultedlineandrealand
428IEEETRANSACTIONSONENERGYCONVERSION,VOL.22,NO.2,JUNE
2007
Fig.20.Caseofvoltageregulationoperation.(a)Terminalvoltagemagnitude.(b)ReactivegenerationofVSWTandreactiveinjectioninto
grid.
Fig.21.Faultonthe22.9kVfeederwith
VSWT.
Fig.23.Systemresponsetoasinglephasefaultinturbinespeedandtorques.(a)Windturbinespeed.(b)Aerodynamictorqueandelectricaltorque.(c)Me-chanicaltorque.
Fig.22.Systemresponsetoasinglephasefaultinvoltage,currentandpower.(a)Voltagewaveformofthefaultedphase.(b)Referenceandactualcurrentwaveformsofthefaultedphase.(c)Realandreactivepower uctuationsofthe
VSWT.
reactivepoweroftheVSWT.ThefaultcurrentinjectioninFig.22(b)didnotexceedthe1.2timesthemaximumloadcurrentvalue,i.e.,0.82[kA],sincetheactualcurrentoftheinverterisforcedtofollowthereferencecurrentwaveformwithitsmag-nitudelimitedbytheq-axisreferencecurrentlimits(refertoTableI).Fig.23presentsthesystemresponseinturbinespeedandtorques.Attheinstantoffault,therewereminor uctua-tionsintheturbinespeedandtorquesoftheVSWTbuttheydiedawayaftertheclearanceoffault.
2)ThreePhaseShort-CircuitFault:Thevoltageandcurrentwaveformsandtherealandreactivepower uctuationsoftheVSWTaregiveninFig.24.Thefaultcurrentwaslimitedtothe1.2timestheratedcurrentvaluebythereferencelimitsoftheinverter.Fig.25showsthesystemresponseintheturbinespeedandtorques.Duetogreatinertiaofthemulti-polegener-ator,theturbinespeedreturnedtothenormalspeed(thelevelbeforefault)severalseconds,i.e.,6secondsinthiscase,aftertheclearanceofthefault(Fig.25(a)).Asthefaultoccurred,theturbinespeedslowlyroseandwentofftheoptimalspeedforthemaximumpowercapture,andtheaerodynamictorquedecreased(Fig.25(b)).Afterthefaultwasremoved,theaerody-namictorquestartedincreasingwiththedecreasingrotorspeedinFig.25(a).Unliketheturbinetorque,adrasticchangecanbeseenintheelectricaltorque.Responsetimedifferencebetweentherapidelectricalresponseofthegeneratorandslowaerody-namicresponseoftheturbineresultedinthemechanicaltorquevariationasshowninFig.25(c).
KIMANDKIM:PSCAD/EMTDCBASEDMODELINGANDANALYSISOFAGEARLESSVARIABLESPEEDWINDTURBINE
429
IV.CONCLUSION
AdynamicmodelofagearlessVSWTwithpowerelectronicinterfacewasproposedforcomputersimulationstudyandwasimplementedinareliablepowersystemtransientanalysispro-gram,PSCAD/EMTDC.TheVSWTcomponentmodelsandcontrolschemewerebuiltbyusinguser-de nedandbuilt-incomponentsprovidedinthesoftware.Dynamicresponsesofthewindturbinetovaryingwindspeedanddifferentreactivecontrolschemesweresimulatedandanalyzedbasedonthemod-eledsystem.Faulttestswerecarriedouttostudythedynamicbehaviorsofpower,torqueandrotorspeedofaVSWTunderabnormalconditions.
Inelectricutilities’perspective,gridinterfaceofintermittentgenerationsourcessuchaswindturbineshasbeenachallengebecausesuchinterfacemaylowerpowerqualityofpowersys-tems.Therefore,comprehensiveimpactstudiesarenecessarybeforeaddingwindturbinestorealnetworks.Inaddition,usersorsystemdesignerswhointendtoinstallordesignwindturbinesinnetworksmustensurethattheirsystemshavewellperformedwhilemeetingtherequirementsforgridinterface.Theworkil-lustratedinthisstudymayprovideareliabletoolforevaluatingtheperformanceofagearlessVSWTanditsimpactsonpowernetworksintermsofdynamicbehaviors;therefore,serveasapreliminaryanalysisforactualapplications.
REFERENCES
Fig.24.Systemresponsetoathree-phasefaultinvoltage,currentandpower.(a)VoltagewaveformsoftheVSWT.(b)CurrentwaveformsoftheVSWT.(c)Realandreactivepower uctuationsofthe
VSWT.
[1]M.R.Patel,http://A:CRCPress,1999,
pp.82–83.
[2]ManitobaHVDCResearchCenter,PSCAD/EMTDCPowerSystemSim-ulationSoftwareUser’sManual,Version3,1998release..
[3]O.Anaya-LaraandE.Acha,“Modelingandanalysisofcustompower
systemsbyPSCAD/EMTDC,”IEEETrans.PowerDelivery,vol.17,no.1,pp.266–272,Jan.2002.
[4]J.G.Slootweg,S.W.H.deHaan,H.Polinder,andW.L.Kling,“Gen-eralmodelforrepresentingvariablespeedwindturbinesinpowersys-temdynamicssimulations,”IEEETrans.PowerSystems,vol.18,no.1,pp.144–151,Feb.2003.
[5]P.M.AndersonandA.Bose,“Stabilitysimulationofwindturbinesys-tems,”IEEETrans.PowerApp.Sys.,vol.PAS-102,no.12,pp.3791–3795,Dec.1983.
[6]M.G.Reynolds,“StabilityofWindTurbineGeneratorstoWindGusts,”
PurdueUniversityReportTR-EE79-20.
[7]A.Murdoch,R.S.Barton,J.R.Winkelman,andS.H.Javid,“Control
designandperformanceanalysisofa6MWwindturbinegenerator,”IEEETrans.PowerApp.Syst.,vol.PAS-102,no.5,pp.1340–1347,May1983.
[8]E.Spooner,A.C.Williamson,andG.Catto,“Modulardesignofperma-nentmagnetgeneratorsforwindturbines,”inIEEProc.-Electr.PowerAppl.,vol.143,no.5,Sep.1996,pp.388–395.
[9]“IEEECommitteeReport,Computerrepresentationofexcitationsys-tems,”IEEETrans.PowerApp.Syst.,vol.PAS-87no.6,Jun.1968.
[10]KoreaMinistryofCommerce,IndustryandEnergy,FinalReport:The
studyofdevelopmentandoperationassessmentforlargeclasswindenergygenerationsystem,pp.390–393,Nov.2001.
[11]P.Kundur,PowerSystemStabilityandControl,NewYork:McGraw-Hill,1994,pp.1029–1031.
[12]Z.ChenandE.Spooner,“Gridpowerqualitywithvariablespeedwind
turbines,”IEEETrans.EnergyConvers.,vol.16,no.2,pp.148–154,Jun.2001.
[13]J.Machowski,J.W.Bialek,andJ.R.Bumby,PowerSystemDynamics
andStability.NewYork:Wiley,1997.
[14]E.MuljadiandC.P.Butter eld,“Pitch-controlledvariable-speedwind
turbinegeneration,”IEEETrans.Ind.Appl.,vol.37,no.1,pp.240–246,Jan./Feb.2001.
[15]IEEEStandardforDistributedResourcesInterconnectedwithElectrical
PowerSystemsIEEEStd.1547,2003.
Fig.25.Systemresponsetoathree-phasefaultinturbinespeedandtorques.(a)Windturbinespeed.(b)Aerodynamictorqueandelectricaltorque.(c)Mechanicaltorqueonshaft.
430IEEETRANSACTIONSONENERGYCONVERSION,VOL.22,NO.2,JUNE
2007
Seul-KiKimreceivedtheB.S.andM.S.degreesinelectricalengineeringfromKoreaUniversity,Korea,in1998and2000,respectively.
HehasbeenaSeniorResearcherinthepowersystemresearchgroupofKoreaElectrotechnologyResearchInstitute(KERI),Kyongnam,Korea.Hisareaofinterestismodelingandanalysisofdistributedgenerationsforgridinterface
analysis.
Eung-SangKimreceivedtheB.S.degreeinelec-tricalengineeringfromSeoulNationalUniversityofTechnology,Seoul,Korea,andtheM.S.andPh.D.degreesinelectricalengineeringfromSoongsilUniversity,Seoul,Korea.Currently,heisaPrinci-palResearcherinthepowersystemresearchgroupoftheKoreaElectrotechnologyResearchInstitute,Kyongnam,Korea.Hisareaofinterestispowerqual-ity,integrationandgrid-connectionofdistributedgeneration.