(a)raw
RGB(b)IG
[13](c)MSS
[14](d)SF
[3]
(e)CP[4](top3)
andAC[18](bottom
3)
(f)
FBS(g)GT
Fig.4.Visualcomparisonofsaliencymapsobtainedbydifferentstate-of-the-artalgorithms.Ourmethodproducessaliencymapsthathighlightthewholeobjectregionandoutlinetheforegroundbetterthanothermethods.ThetopthreeimagesamplesaretakenfromtheRGB-Ddatasetpublishedin[4],thebottomthreerowsareRGBsampleswithoutdepthfromtheMSRAdatasetin
[19].
Fig.5.MeanabsoluteerrorsofdifferentalgorithmsontheDSDdataset.
MAE,andprovidesabetterestimateofthedesiredsaliencymaps.SincetheMAEisdesignedtocapturepixelintensitydifferences,itgivesagoodapproximationoftheperformanceofthecomparedalgorithms.
Nextweanalyzetheperformanceofouralgorithminregardtothedepthextensions.OurproposedapproachasexpecteddeliversthebestresultswhenweusethecombinedRGB-Dversion,althoughverygoodresultsare
already
Fig.6.MeanabsoluteerrorsonRGB-Ddataset(DSD[4]).Resultsobtainedwithourproposedmethod(FBS)usingcolor,depthandcombinedcoloranddepthinformation(left).AndcomparisontoalternativealgorithmsIG[13]extendedtousedepth(IGRGBD)andCP[4](right)
achievedwithcoloronlyascanbeseeninFig.6.FurthermorewecomparedtheIGalgorithm,thatweextendedtouseadditionaldepthinformation,withtheCPalgorithm,whichnaturallyistailoredfordepthdata.TheminorextensionstotheRGB-DversionoftheIGalgorithmmakeitalmostaspowerfulastheproposedmethod.