Weexpecttodetermineasaliencymapfromtheseregions.Basedonsegmentedregions,thesaliencymeasurementsarecalculatedbyforegroundsaliencyfeaturesandbackgroundinformation,duetouniquenessoftheforegroundandcon-sistencyofthebackground.
Weassumethatforegroundsalienceissigni cantanddistinctiveinanimage.Thedistinctivenessreferstoaregionwithhighdifferencefromitsneighborhood.Inthissection,weproposeanewforegroundsaliencemeasurebasedondistributionofcolor,depth,positionandareaasanextensiontotheapproachby[3].
Inanimage,theforegroundsaliencevalueFSofeachsegmentedregioniscalculatedas:FS(ri)=ar(ri)·
N j=1
cd(ri) cd(rj) 2·wfs(ri,rj)
Fig.2.Segmentationexamples.RawRGBandgray-scaledepthsamples
(toptworows),graph-baseddepthsegmentation(thethirdrow),graph-basedcolorsegmentation(thefourthrow)andgraph-basedRGB-Dsegmentation(bottomrow)
(2)
ar(ri)isthearearatiooftheregionritotheentireimageandisusedasanadditionalweightingfactorasopposedto[3].Nrepresentsthenumberofsegmentedregions,andcd(r)againisextendedtousedepthinformationandrepresentsaveragecolorinCIELab-spacecombinedwithdepthinregionr.TheGaussianweightwfs(ri,rj)isalocalcontrasttermofforeground,asintroducedin[3]:
wfs(ri,rj)=exp(
1
pi pj 2)δfs
(vi,vj)∈Ehasaweightvaluew(vi,vj)tomeasurethe
dissimilaritybetweenneighbouringverticesviandvj.Thesimilaritybetweenverticesinhomogeneousregionsishigherthanindiscrepantregions.Inourcase,theweightw(pi,pj)referstothedistancebetweenadjacentpixelsinRGBandthegray-scaledepthmapsimplyde nedas:
w(pi,pj)= RGBD(pi) RGBD(pj) (1)
2
= RGB(pi) RGB(pj) +(D(pi) D(pj))2
FS(ri)effectivelyrepresentstherarityofaregionriwithcolor,depthcdiandareacomparedtoallotherregionsrj.C.BackgroundMeasure
Tobeabletoef ciently lterouttruenegativeaswellasfalsepositivesaliencycandidates,itisimportanttode neadequatemeasuresthatareabletoidentifytherespectiveregions.Sinceimagebackgroundusuallyfeaturessomenicepropertieslikehigharearatioandawidespreadclosetotheimageborders,thosecharacteristicsareoftenmodelledinliteratureforsaliency ltering.Whilesalientregionsmayberegardedaslocalregioncandidates,withahighvarianceinsmallareas,backgroundregionsmaybeinterpretedastheircounterpartfeaturingglobalhomogeneityandhighdepthvalues,andasthusbeinghighlysuitableforbroad-phase ltering.Wefollowthiswellknownparadigmandwishto ndabackgroundrepresentationthat,combinedwiththeforegroundrepresentation,isabletoremoveorweakenfalsesaliencycandidatesandthusdeliverbetterestimates.
Takingtheseconsiderationsintoaccount,weproposeameasureCDis(ri)toquantifythepositionofaregionriinanimage.Itisde nedas
CDis(ri)=1
minj p¯i,cj
dc
(3)
Here,RGB(pi)representsthe3-dimensionalvectorofred,greenandbluevaluesofthepixelpiinRGBcolorspace.Respectively,D(pi)isthegray-scaledepthrepresentingthedistanceofthepixelpi.We rstlynormalizefourchannelstotherange[0...255].Toreducein uenceofnoiseartifacts,wethenapplyaGaussian ltertosmootheachofthefourchannelsbeforecalculatingtheedge-weights.Finally,weconstructaminimumspanningtree(MST)tomergesimilarregionsusingtheminimumweightededgebetweentheregions.
Fig.2showsthegraph-basedsegmentationresultsusingtheRGB,depthandthecombinedcoloranddepth-basedsegmentation,respectively.ResultsindicatethatfusionofRGBanddepthprovidesthebestsegmentationquality.Thisisreasonablesincecolorisaninformativebutsensitivefeature,whilethedepthvalueisverywellabletocapturethecompactnessofobjects,andthusmaybeusedtoremoveover-segmentationusingsolelycolor.B.ForegroundSaliencyMeasure
Aftersegmentation,weobtainmultipledifferentregions,eachofwhichhassimilarhomogeneousinnerproperties.
wherep¯irepresentsthecenterpositionofregionri,cjrepresentsthecornerpositionsoftheimageanddcisthedistanceoftheimagecentertoitscorners.Assuming,thatbackgroundisfarawayfromtheimagecenter,CDis(ri)maybeinterpretedgeometricallyasthedistancefromone