手机版

瞬时与平均速度

发布时间:2021-06-06   来源:未知    
字号:

高一第一学期物理知识整理

平均速度与瞬时速度
悬赏分:0 - 解决时间:2007-8-10 21:18
请您详细解释一下,什么是平均速度与瞬时速度,并请您举一些例子来说明平均速度与瞬时速度的区分标准,会追加分的.
问题补充:瞬时速度=∧S/Δt (∧S,Δt →0) 是什么意思.Δt →0
示例:1.物体在第一秒内的速度是2m/s
2.物体在第3秒末的速度是3m/s
3.物体在通过某点时的速度是4m/s
4.物体在通过某段位移内的速度是5m/s
请问以上4个例子是瞬时速度还是平均速度.(请说明理由)

提问者: lieyan712 - 一级最佳答案检举 平均速度明白的吧,在t时间内,位移为S(矢量),则平均速度V=S/t,速度为矢量,有方向性。

还有关于你的示例,这么说,平均速度是某一段的运动性质,顺时速度是某一点的运动性质。

瞬时速度可能不太容易理解
Δt →0表示一小段时间,趋近于0(用箭头表示)
也就是说,如果要求t0是的瞬时速度,那么这个瞬时速度就是v=ΔS/Δt,Δt越小,这个v也就更接近真正的瞬时速度,这也就是为什么Δt要趋近于零,实际上就是个极限。

你可以理解为一辆汽车在马路上行驶,顺时速度就是速度表上的实数。这就足够了,但建议你了解一下本质,往下看。

这样可能更好理解:
现在用函数的思想来说明这个问题,设一个函数,自变量为t,位移的大小为函数,那么这个函数表示为S=f(t),如果这是一个正比例函数(S=vt),也就是说对应一个匀速直线运动,那么,对于任意时刻,瞬时速度就是这个函数的斜率。

那么如果f(t)是个曲线,t0时的瞬时速度就是过(t0,f(t0))点图像的一条切线的斜率(这可以由瞬时速度的定义得,但你没学过极限,所以就不要求你证明了,后面我在写一个比较好理解极限的)。为什么呢?

在t0右边取一点t0+Δt(Δt→0你就理解为Δt很小就行了),那么这个函数在(t0,f(t0))与(t0+Δt,f(t0+Δt))之间这一段很短,就可以理解成是一条直线(严格证明也是极限的内容,你就直观的理解一下就行了),那么在这一段上,就可以认为是匀速直线运动,那么在时间间隔t0~t0+Δt上,平均速度就十分接近t?点的瞬时速度v?,并且Δt越小,越接近。如果说本质的话,瞬时速度就是,很短时间内的平均速度的极限。(也就是说,时间越短,平均速度就越接近瞬时速度)


现在我们回归物力,在一个运动上,取一小段时间Δt,则在这段时间上,加速度可以忽略(极限问题),这样我们把它近似为一个匀速运动,然后瞬时速度就是极短时间内的平均苏度。



当然,一般情况下,这种极限思想是不会再做题中遇到的,这只是一个定义,顺时速的就是物体在某一时刻机械运动的

瞬时与平均速度.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
×
二维码
× 游客快捷下载通道(下载后可以自由复制和排版)
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能出现无法下载或内容有问题,请联系客服协助您处理。
× 常见问题(客服时间:周一到周五 9:30-18:00)