小学四年级奥数综合练习
第8讲 巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)〓公差
项数公式:项数=(末项-首项)〔公差+1
二、精讲精练
【例题1】 有一个数列:4,10,16,22.…,52.这个数列共有多少项?
【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)〔6+1=9,即这个数列共有9项。
练习1:
1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?
2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
【思路导航】这个等差数列的首项是3.公差是4,项数是100。要求第100项,可根据“末项=首项+公差〓(项数-1)”进行计算。
第100项=3+4〓(100-1)=399.
练习2:
1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?
2.求1.4,7,10……这个等差数列的第30项。
3.求等差数列2.6,10,14……的第100项。
【例题3】有这样一个数列:1.2.3.4,…,99,100。请求出这个数列所有项的和。
【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)〓100〔2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和: 等差数列总和=(首项+末项)〓项数〔2
- 15 -