控制算法 主要是机电一体化
机电一体化系统控制算法的理论研究
摘要:机电一体化中,在进行任何一个具体控制系统的分析、综合或设计时,首先应建立该系统的数学模型,确定其控制算法。所谓数学模型就是系统动态特性的数学表达式。它反映了系统输入、内部状态和输出之间的数量和逻辑关系。这些关系式为计算机进行运算处理提供了依据,即由数学模型推出控制算法。所谓计算机控制,就是按照规定的控制算法进行控制,因此,控制算法的正确与否直接影响控制系统的品质,甚至决定整个系统的成败。
关键词:机电一体化 控制系统 数学模型 动态特性 控制算法
一、控制算法在机电一体化控制系统中的作用及地位 机电一体化是融合检测技术、信息处理技术、自动技术控制、伺服驱动技术、微电子技术、计算机技术以及机械技术等多种技术于一体的新兴综合性学科。机电一体化控制系统是为了形成某种特殊功能而装配起来的一组物理元件。我们所研究的“系统”就是有相互联系、相互作用的若干部分构成,而且有一定的目的或一定的运动规律的一个整体。一般的机电系统是机械和电的组合系统。 现代机电一体化控制理论是建立在状态空间上的一种分析方法,它的数学模型主要是状态方程,控制系统的分析与设计可以说是精确的。机电一体化控制系统的设计中应对控制子系统建立数学模型,确定其控制算法。控制算法决定了控制系统的优劣。控制系统的数学模型在控制系统的研究中有着相当重要的地位,要对系统进行仿真处理,首先应当知道系统的数学模型,然后才可以对系统进行模拟。数学模型就是系统动态特性的数学表达式。它反映了系统输入,内部状态和输出之间的数量和逻辑关系。控制算法即所谓计算机控制,就是按照规定的控制算法进行控制,因此,控制算法的正确与否直接影响控制系统的品质,甚至决定整个系统的成败。
在工业控制中,许多控制过程机理复杂,滞后大,控制对象具有变结构、时变等特点。相应的,每个控制系统都有一个特定的控制规律,因此,每个控制系统都有一套与此控制规律相对应的控制算法。由于控制系统种类繁多,控制算法也是很多的,随着控制理论和计算机技术的不断发展,控制算法更是越来越多。例如,机床控制中常采用的逐点比较法和数字积分法;直接数字控制系统中常用的PID调节控制算法。当控制系统比较复杂时,控制算法也比较复杂,整个控制系统的实现就比较困难,为了设计、调试方面,可将控制算法作沒些合理的简化,忽略沒些因素的影响(如非线性、小延时、小惯性等),在取得初步控制成果后,再逐步将控制算法完善,直到获得最好的控制效果。控制技术发展到今天,其理论水平已达到相当的高度。而如何将这些理论(或者说是控制思想)实际应用才是作为大多数工程技术人员目前需要考虑的问题。
控制算法 主要是机电一体化
二、机电一体化系统中控制算法对系统的影响
1.对机械系统功能的影响
微电子技术和信息处理技术的应用,赋予传统机械产品许多新的功能,同时创造出许多现代机电新产品,这些产品所具备的多种复合功能已成为一个显著的技术特征。在机电一体化系统中,不同的动力驱动部件之间可以不再有物理上的联系,而是演变为逻辑上的联系,即控制算法。且每一个驱动部件都可以具有一定的智能化,能直接控制位置和速度。逻辑联系的可编程性以及单个驱动部件的智能化,是机电一体化系统的功能得到丰富和提高的主要原因,通过软件设计,机电一体化系统可以完成极其复杂的任务。
2.对机械系统性能的影响
控制算法,使得机电一体化的动力系统智能化、分散化,不但使传动链缩短,提高了传动精度,而且使整个机电一体化系统的机械结构更为简单,机械部件数量减少,使系统的刚度更好。由于这些因素,使机电一体化系统的运动特性和动力特性都得到很大的提高,同时也使由机械磨损、配合间隙和受力变形等机械因素引起的误差得到有效的控制,直接表现为系统的运动精度提高和响应速度加快。机电一体化系统在工作精度上远高于纯机械系统,主要得益于以下几点:第一,机械结构的简化使结构刚度大幅度提高;第二,传动链的缩短使传动刚度大幅度提高;第三,嵌入式的信息处理系统和各种传感器的大量采用,使系统的运行处在闭环控制中,可以通过控制算法对工作过程加以控制以补偿各种干扰引起的工作误差,并提高响应速度和工作效率。
三、机电一体化控制系统中控制算法的选择
在工业控制中,每个控制系统都有一个特定的控制规律,因此,每个控制系统都有一套与此控制规律相对应的控制算法。由于控制系统种类繁多,控制算法也是很多的,随着控制理论和计算机技术的不断发展,控制算法更是越来越多。例如,机床控制中常采用的逐点比较法和数字积分法;直接数字控制系统中常用的PID调节控制算法;位置数字伺服系统中常用的最少拍控制算法;另外,还有各种最优控制算法、随机控制和自适应控制算法。在系统设计时,应根据所设计的具体控制对象的控制性能指标要求及所选用的微型机处理能力选定一种控制算法。应注意控制算法对系统性能指标的直接影响。因此,应考虑所选定的算法是否能满足控制速度、控制精度和系统稳定性的要求。就是说,应根据不同的控制对象、不同的控制指标要求选择不同的控制算法。例如,要求快速跟随的系统可选用达到最少拍的直接控制算法;对于具有纯滞后的系统最好选用达林算法或施密斯补偿算法;对于随机控制系统应选用随机控制算法。下面通过数字控制系统中常用的PID调节举例来选择控制算法。
(一)PID控制器的函数及用途
PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
控制算法 主要是机电一体化
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e(t)与输出u(t)的关系为:
u(t)= Kp(e(t)+1/Ti∫e(t)dt+Td*de(t)/dt)
式中积分的上下限分别是0和t。
因此它的传递函数为:G(s)=U(s)/E(s)= Kp(1+1/(Ti*s)+Td*s)
其中Kp为比例系数;Ti为积分时间常数; Td为微分时间常数。
它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。
首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。 其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。
第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。 在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。
在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:
如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。
如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。
因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。
PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。
虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器。
(二)PID的控制系统
目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传
控制算法 主要是机电一体化
感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
1、开环控制系统
开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
2、闭环控制系统
闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。
3、阶跃响应
阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。
(三)PID控制的原理和特点
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
1、比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例
控制算法 主要是机电一体化
关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
2、积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
3、微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
(四)PID控制器的参数整定
PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。 对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
参数整定找最佳,从小到大顺序查。
先是比例后积分,最后再把微分加。
曲线振荡很频繁,比例度盘要放大。
曲线漂浮绕大湾,比例度盘往小扳。
控制算法 主要是机电一体化
曲线偏离回复慢,积分时间往下降。
曲线波动周期长,积分时间再加长。
曲线振荡频率快,先把微分降下来。
动差大来波动慢。微分时间应加长。
理想曲线两个波,前高后低4比1。
一看二调多分析,调节质量不会低。
(五)PID控制实现
1.PID 的反馈逻辑
各种变频器的反馈逻辑称谓各不相同,甚至有类似的称谓而含义相反的情形。系统设计时应以所选用变频器的说明书介绍为准。所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出频率和电机转速.减少冷水的流量。由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。这就是引入反馈逻辑的原由。
2.打开 PID 功能
要实现闭环的 PID 控制功能,首先应将 PID 功能预置为有效。具体方法有两种:一是通过变频器的功能参数码预置,例如,康沃 CVF-G2 系列变频器,将参数 H-48 设为 O 时,则无 PID 功能;设为 1 时为普通 PID 控制;设为 2 时为恒压供水 PID 。二是由变频器的外接多功能端子的状态决定。例如安川 CIMR-G 7A 系列变频器,如图 1 所示,在多功能输入端子 Sl-S10 中任选一个,将功能码 H1-01 ~ H1-10( 与端子 S1-S10 相对应 ) 预置为 19 ,则该端子即具有决定 PI[) 控制是否有效的功能,该端子与公共端子 SC “ ON ”时无效,“ OFF ”时有效。应注意的是.大部分变频器兼有上述两种预置方式,但有少数品牌的变频器只有其中的一种方式。
在一些控制要求不十分严格的系统中,有时仅使用 PI 控制功能、不启动 D 功能就能满足需要,这样的系统调试过程比较简单。
3.目标信号与反馈信号
欲使变频系统中的某一个物理量稳定在预期的目标值上,变频器的 PID 功能电路将反馈信号与目标信号不断地进行比较,并根据比较结果来实时地调整输出频率和电动机的转速。所以,变频器的 PID 控制至少需要两种控制信号:目标信号和反馈信号。这里所说的目标信号是某物理量预期稳定值所对应的电信号,亦称目标值或给定值;而该物理量通过传感器测量到的实际值对应的电信号称为反馈信号,亦称反馈量或当前值。图中有一个 PID 开关。可通过变频器的功能参数设置使 PID 功能有效或无效。PID 功能有效时,由 PID 电路决定运行频率; PID 功能无效时,由频率设定信号决定运行频率。PID 开关、动作选择开关和反馈信号切换开关均由功能参数的设置决定其工作状态。
4.目标值给定
如何将目标值(目标信号)的命令信息传送给变频器,各种变频器选择了不同的方法,而归结起来大体上有如下两种方案:一是自动转换法,即变频器预置 PID 功能有效时,其开环运行时的频率给定功能自动转为目标值给定.
以上介绍了目标信号的输入通道,接着要确定目标值的大小。由于目标信号
控制算法 主要是机电一体化
和反馈信号通常不是同一种物理量。难以进行直接比较,所以,大多数变频器的目标信号都用传感器量程的百分数来表示。例如,某储气罐的空气压力要求稳定在1.2MPa ,压力传感器的量程为2MPa ,则与1.2MPa 对应的百分数为 60%,目标值就是 60 %。而有的变频器的参数列表中,有与传感器量程上下限值对应的参数,例如富士 P11S 变频器,将参数 E40( 显示系数 A) 设为2,即压力传感器的量程上限 2MPa :参数 E41( 显示系数 B) 设为 0,即量程下限为 0,则目标值为 1.2 。即压力稳定值为1.2 MPa 。目标值即是预期稳定值的绝对值。
5.反馈信号的连接
各种变频器都有若干个频率给定输入端,在这些输入端子中,如果已经确定一个为目标信号的输入通道,则其他输入端子均可作为反馈信号的输入端。可通过相应的功能参数码选择其中的一个使用。比较典型的几种变频器反馈信号通道选择见表 3 。
6. P 、 I 、 D 参数的预置与调整
(1) 比例增益 P
变频器的 PID 功能是利用目标信号和反馈信号的差值来调节输出频率的,一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。解决这一矛盾的方法就是事先将差值信号进行放大。比例增益 P 就是用来设置差值信号的放大系数的。任何一种变频器的参数 P 都给出一个可设置的数值范围,一般在初次调试时, P 可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。
(2) 积分时间
如上所述.比例增益 P 越大,调节灵敏度越高,但由于传动系统和控制电路都有惯性,调节结果达到最佳值时不能立即停止,导致“超调”,然后反过来调整,再次超调,形成振荡。为此引入积分环节 I ,其效果是,使经过比例增益 P 放大后的差值信号在积分时间内逐渐增大 ( 或减小 ) ,从而减缓其变化速度,防止振荡。但积分时间 I 太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。因此, I 的取值与拖动系统的时间常数有关:拖动系统的时间常数较小时,积分时间应短些;拖动系统的时间常数较大时,积分时间应长些。
(3) 微分时间 D
微分时间 D 是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。 D 的取值也与拖动系统的时间常数有关:拖动系统的时间常数较小时,微分时间应短些;反之,拖动系统的时间常数较大时, 微分时间应长些。
(4)P、I、D 参数的调整原则
P 、I 、D 参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:被控物理量在目标值附近振荡,首先加大积分时间 I,如仍有振荡,可适当减小比例增益 P。被控物理量在发生变化后难以恢复,首先加大比例增益P,如果恢复仍较缓慢,可适当减小积分时间 I,还可加大微分时间 D。
例如还有机床控制中常使用的逐点比较法的控制算法和数字积分法的控制算法:
控制算法 主要是机电一体化
直线算法:F yxa xya 或 T XT Y yexe K
圆弧算法:Fi Xi Yi R222 或 T XT Y xy
各种控制算法提供了一套通用的计算公式,但具体到一个控制对象上,必须有分析的选用,在某些情况下可能还要进行某些修改与补充。例如,对某一控制系统对象选用PID调节规律数字化的方法设计数字控制器。在某些情况下,应对其作适当改进,以使系统得到更好的快速性。
四、机电一体化系统中控制算法的发展 纵观国内外机电一体化的发展现状和高新技术的发展动向,机电一体化系统控制算法将朝着以下几个方向发展。
1.智能化
智能化是机电一体化与传统机械自动化的主要区别之一,也是21世纪机电一体化的发展方向。近几年,处理器速度的提高和微机的高性能化、传感器系统的集成化与智能化为嵌入智能控制算法创造了条件,有力地推动着机电一体化产品向智能化方向发展。智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论和信息论等多种学科的高度综合与集成,是一门新的交叉前沿学科。从广义上讲,智能控制是研究对复杂的不确定性被控对象(过程)采用人工智能的方法有效地克服系统的不确定性,使系统从无序到期望的有序状态转移的方法及其规律。智能机电一体化产品可以模拟人类智能,具有某种程度的判断推理、逻辑思维和自主决策能力,从而取代制造工程中人的部分脑力劳动。
2.系统化
系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意的剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现特征之二是通信功能大大加强,一般除R S232等常用通信方式外,实现远程及多系统通信联网需要的局部网络正逐渐被采用。系统控制算法能使未来的机电一体化更加注重产品与人的关系,如何赋予机电一体化产品以人的智能、情感、人性显得越来越重要。从而根据一些生物体优良的构造研究某种新型机体,使其向着生物系统化方向发展。
3.模块多元化
模块多元化也是机电一体化系统控制算法的一个发展趋势,是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、信息接口的机电一体化产品单元是一项复杂而重要的事,它需要制订一系列标准,以便各部件、单元的匹配和接口。网络技术的飞速发展对系统控制有重大影响,使其朝着网络化方向发展。机电一体化系统控制算法通过网络化、模块化等多元化结合,利用标准单元迅速开发新产品,同时也可以不断扩大生产规模。
控制算法 主要是机电一体化
五、设计心得
尽管课程设计是在期末才开始,我们的教材学习完毕,掌握许多知识,但是还有很多地方理解领悟不到位,只得参考其他文献,逐步摸索。彻悟学海无涯只有苦来作舟,学无止境只有书来作伴。在这次的课程设计中,在收获知识的同时,还收获了阅历,收获了成熟,在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在课程设计过程中,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。这次的课程设计也让我看到了团队的力量,我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。
通过这次课程设计,我想说:为完成这次课程设计我们确实很辛苦,但苦中仍有乐,和团队人员这十几天的一起工作的日子,让我们有说有笑,相互帮助,配合默契,多少人间欢乐在这里洒下,大学里一年的相处还赶不上这十来天的实习,我感觉我和同学们之间的距离更加近了。以前种种艰辛都变成了最甜美的回忆!
对我而言,知识上的收获重要,精神上的丰收更加可喜。让我知道了学无止境的道理。我们每一个人永远不能满足于现有的成就,人生就像在爬山,一座山峰的后面还有更高的山峰在等着你。挫折是一份财富,经历是一份拥有。这次课程设计必将成为我人生旅途上一个非常美好的回忆!
综上所述,课程设计诚然是一门专业课,给我很多专业知识以及专业技能上的提升,同时又是一门讲道课,一门辩思课,给了我很大的空间。
控制算法 主要是机电一体化
参考文献:
1、张铁.机器人技术及其应用.华南理工出版社,2009.
2、赵再军.机电一体化概论.浙江大学出版社,2009.
3、王中杰,余章雄,柴天佑.智能控制综述.基础自动化,2008.
4、章浩,张西良,周士冲.机电一体化技术的发展与应用.农机化研究,2007.
5、梁俊彦,李玉翔.机电一体化技术的发展及应用.科技资讯,2009。
6、冯晓,刘仲怒.电机与电器控制.机械工业出版社,2009.