北京大学出版社
2-1(1)a.微分方程
(2)a.线性定常
2-2.方框、信号线、综合点、引出点
2-3.变换变量关系保持不变。
2 n12-4. G(s) 22 22Ts 2T s 1s 2 ns n
2-5. 输入信号r(t)和输出信号c(t)及其各阶导数在t 0时的值均为零。 2-6
解:取分离体分析受力如图3-1-3所示。依据牛顿定律可得
d2y(t)f t fB t fK t m a m (1) dt2
式中 fK── 弹簧力;fB t ── 阻尼力。
弹簧力与物体位移成正比,即
fK K y(t) (2)
式中 K── 弹簧刚度
阻尼力与运动速度成正比,与运动方向相反,即
fB Bdy t (3) dt
式中 B ── 阻尼系数
将式(2)和(3)代入(1)中,可得该系统的微分方程式:
d2y t dy t m B Ky t f t (4) dtdt2
若令 TB=B──时间常数;Tm Km──时间常数。则(4)式可写成: K
d2y t dy t 1 T T yt f t Kaf t BdtKdt22m
式中 Ka
2-7. 解:(a);;;
(b) 1 K
北京大学出版社
K2K3K4( s K1)C(s) 2 R(s) s (1 K2K3K4 )s K1K2K3K4 K3K4K5
G1G2G3 G1G4C(s) 2-9. (a) R(s)1 G1G2H1 G1G2G3 G1G4 G2G3H2 G4H2
C(s)G1G2 G2G3 (b) R(s)1 G1G2H
G1G2C(s) 2-10. R(s)1 G1G2H1 G2H2
G2 G1G2GcC(s) N(s)1 G1G2H1 G2H22-8.
2-11.G1G2G3C(s) G4 R(s)1 G1G2H1 G2H1 G2G3H2
2-12.(a) C(s)abcdefg R(s)1 (bh di fj bcdefk) (bhdi bhfj difj) bhdifj
C(s)G1G2G3G4G5 G6(1 G3H1 G3G4H3) (b) R(s)1 G1G2G3G4H2 G3H1 G3G4H3
2-13
解:前向通道:P1 G1G2G3, P2 G1G4; 回路增益:L1 G1G2H1, L2 G2G3H2,
L3 G4H2, L4 G1G2G3,L5 G1G4;
特征式: 1 G1G2H1 G2G3H2 G4H2 G1G2G3 G1G4, 1 1, 2 1; (s)
2-14 G1G2G3 G1G4 1 G1G2H1 G2G3H2 G4H2 G1G2G3 G1G4
解:前向通道:P1 G1G2G3,
P2 G4G3;
回路增益:L1 G1G2G3H1H2,
L2 G1H1,
L3 G3H2,
互不接触回路L2和L3
特征式: 1 G1G2G3H1H2 G3H2 G1H1 G1G3H1H2,
1 1,
2 1 G1H1;
(s) G1G2G3 G3G4(1 G1H1) 1 G1G2G3H1H2 G3H2 G1H1 G1G3H1H2
北京大学出版社
2-15
解:先将系统结构图化简为如下形式
回路增益:L1 G1G2G3H3,
L2 G2H2,
L3 G1H1,
特征式: 1 G1G2G3H3 G2H2 G1H1 C(s)/R(s):前向通道:P1 G1G2G3, 1 1, M(s)/N(s): 前向通道:P2 G2, 2 1 E(s)/R(s): 前向通道:P3 1, 3 1 G2H2 G1H1 CR(s) G1G2G3 1 G1G2G3H3 G2H2 G1H1
G2 1 G1G2G3H3 G2H2 G1H1
1 G2H2 G1H1 1 G1G2G3H3 G2H2 G1H1 NM(s) ER(s)